11:30-12:30 h AUDITORIO 3

COMUNICACIONES ORALES

NUEVAS TECNOLOGÍAS/NEFROLOGÍA

Moderadores: Manuel García-Montesinos de la Peña,

Hospital Universitario de Navarra, Pamplona/Marcos Pérez Carrasco,

C.S. Parc Tauli, Sabadell

612. HACIA LA INTEROPERABILIDAD SEMÁNTICA: CONSENSO CLÍNICO PARA LA ESTANDARIZACIÓN DE DATOS AL INGRESO DEL PACIENTE EN UCI

Bodí M¹, Manrique S¹, Trenado J², Ortiz P^3 , Esteban F^1 , Brunet J¹, López P^4 , Briceño H^5 , Bonet T^5 y Piera J^5

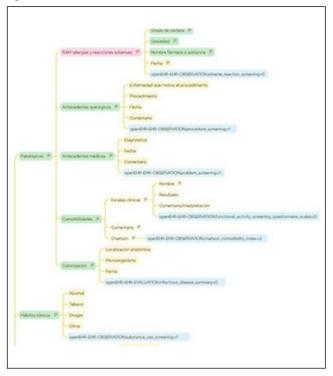
¹Hospital Universitari Joan XXIII, Tarragona. ²Hospital Universitari Mútua de Terrassa, Barcelona. ³Hospital Universitari Dr. Josep Trueta, Girona. ⁴Institut Català de la Salut, Barcelona. ⁵Servei Català de la Salut, Barcelona.

Objetivos: Desarrollar un modelo de información estandarizado para el registro de datos al ingreso en Servicios de Medicina Intensiva mediante openEHR. La interoperabilidad semántica en sistemas de información sanitaria es un requisito fundamental para garantizar una atención segura y eficiente. La ausencia de estándares genera barreras en la comunicación entre profesionales, dificulta la agregación de datos para investigación y puede comprometer la seguridad del paciente. La metodología openEHR proporciona un marco robusto para crear modelos de datos reutilizables que mantienen la integridad semántica de la información. En Medicina Intensiva, esta estandarización es especialmente crítica dado el volumen y complejidad de los datos generados, la necesidad de toma de decisiones rápidas y la importancia de la comunicación precisa entre equipos multidisciplinares.

Métodos: Se realizó un estudio cualitativo basado en consenso de expertos. El proceso comenzó con el desarrollo de mapas mentales para capturar el conocimiento clínico del dominio. Se realizaron seis sesiones de trabajo con un equipo multidisciplinar de intensivistas, enfermería y expertos en openEHR. Este proceso incluyó: identificación de requisitos, normalización de los elementos de datos (de acuerdo a estándares y evidencia científica publicada), organización de conceptos, búsqueda de arquetipos correspondientes, y edición de arquetipos.

Resultados: Se desarrolló la primera versión a alto nivel incluyendo 35 elementos, 21 ya arquetipados en el CKM (Clinical Knowledge Manager). Los elementos se agruparon en: datos sociodemográficos y datos clínicos (antropométricos, motivo de ingreso, objetivo terapéutico, intensidad terapéutica, escalas clínicas, antecedentes, tratamiento, enfermedad actual, exploración física, valoración enfermera, exploraciones complementarias, evolución clínica inicial, orientación diagnóstica, plan individualizado y persona de contacto). Imagen de un apartado del arquetipado en la figura.

Conclusiones: El modelado es viable y ha permitido consensuar un conjunto de datos estandarizado para el ingreso del paciente crítico. Esta base permitirá desarrollar formularios interoperables entre diferentes sistemas de información clínica. Queda pendiente la publicación y revisión de arquetipos por la comunidad openEHR.

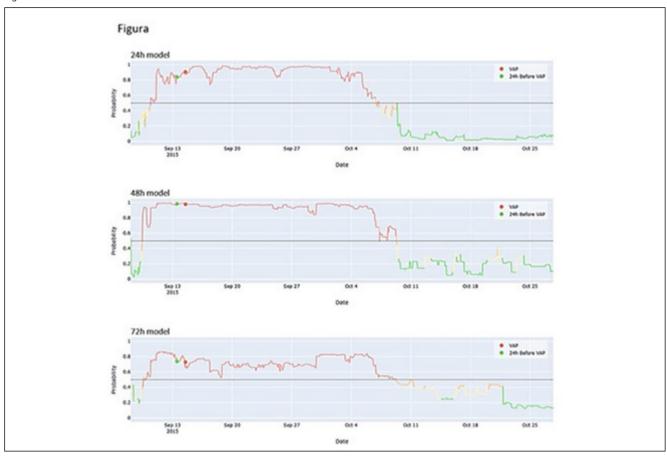

613. DESARROLLO DE UN MODELO DE PREDICCIÓN DE NEUMONÍA ASOCIADA A LA VENTILACIÓN MECÁNICA (NAV) EN TIEMPO REAL

Berrueta J, Rodríguez Oviedo AH, Bodí M, García A, Marotta M, Manrique S, Claverias L y Gómez J

Hospital Universitari Joan XXIII, Tarragona.

Objetivos: Desarrollar mediante *machine learning*, un modelo de predicción de NAV en tiempo real a las 24, 48 y 72 horas antes del diagnóstico clínico/microbiológico.

Figura Póster 612


Métodos: Se incluyeron todos los pacientes desde 1/1/2014 hasta 1/12/2024 que necesitaron ventilación mecánica (VM) por más de 2 días. El día 0 fue el diagnóstico de NAV y las variables clínicas (demográficas, tipo de admisión, frecuencia respiratoria, FiO2, traqueostomía, temperatura, saturación de O2, APACHE II, SOFA, fármacos vasoactivos, tipo de secreciones, diuresis, antibiótico, días de VM, PEEP) y de laboratorio (PCR, PCT, leucocitos, linfocitos, creatinina, glucemia) incluidas en los modelos se consideraron con ventanas de -24, -48 y -72 horas respectivamente y fueron obtenidas automáticamente desde el sistema de información clínica, a través de una ETL (Extract, Transform and Load) en un entorno Python/Jupyter. Los datos se dividieron en un set de entrenamiento (E = 80%) y otro de prueba (p = 20%). El disbalance de la clase positiva (NAV) fue corregido en E mediante la aplicación de un ajuste (downsampling). Los modelos desarrollados mediante XGBoost se evaluaron para investigar su eficacia en la predicción de la NAV 24 h, 48 h y 72 h antes de la fecha del evento mediante accuracy, recall, matriz de confusión y área bajo la curva ROC (AUC).

Resultados: Se incluyeron 2.714 pacientes, 314 (11,6%) con NAV. Aunque los 3 modelos desarrollados presentaron un adecuado rendimiento, el modelo de -24 horas presentó un mejor funcionamiento con una AUC 90% y un *accuracy* del 85% (tabla). La aplicación del modelo en tiempo real permite evaluar diariamente el riesgo de NAV en cada paciente que varía en función de las modificaciones diarias de las variables incluidas (fig.).

	24h	48h	72h
Modelo	XGBoost	XGBoost	XGBoost
	Accuracy: 0.85	Accuracy: 0.71	Accuracy: 0.70
	Recall: 0.83	Recall: 0.76	Recall: 0.73
Rendimiento	Matriz de confusión:	Matriz de confusión:	Matriz de confusión:
	52 11	48 15	46 17
	73 407	142 338	146 334
	AUC: 0.90	AUC: 0.77	AUC: 0.75
N Variables	11	10	13

Conclusiones: El desarrollo de 3 modelos de predicción de NAV en tiempo real es posible y muestra una adecuada predicción, especialmente a las 24 horas previas. Estos resultados deberán ser validados prospectivamente y en otras UCI para valorar su posible aplicación.

Figura Póster 613

614. COMPLICACIONES DE LAS TERAPIAS DE DEPURACIÓN EXTRACORPÓREA NOCTURNA: UNA TÉCNICA SEGURA

Barrueco Francioni JE¹, Herrera Gutiérrez ME¹, Sánchez-Izquierdo Riera JA², Arias Verdú MD¹, González Fernández M², Quílez Trasobares N², Barea Mendoza JA², Molina Collado Z², Tizón Varela Al³ y Seller Pérez G¹

¹Hospital Universitario Regional de Málaga (C.H.U. Regional de Málaga), Málaga. ²Hospital Universitario 12 de Octubre, Madrid. ³Complexo Hospitalario Universitario de Ourense, Ourense.

Objetivos: Analizar el comportamiento de la terapia de depuración extracorpórea (TDE) nocturna comparada con TDE continuas convencionales en términos de complicaciones.

Métodos: Análisis del registro prospectivo multicéntrico DialyReg desde 2019 a 2023. La TDE nocturna se realiza con un monitor de diálisis

continua, empleando de preferencia un filtro de polisulfona de bajo flujo, o un filtro de AN-69 de 1 m², sin anticoagulación y con una duración programada de 12 horas/día habitualmente de noche. Se compara las complicaciones más habituales entre la TDE nocturna y las TDE continuas

Resultados: Se analizaron 1.577 sesiones en 594 pacientes: 901 (57,1%) con TDE continuas y 676 (42,9%) con TDE nocturna. Las complicaciones fueron escasas, siendo inferiores para la TDE nocturna 0,42 (0,37-0,48)/episodios por sesión versus 0,61 (0,56-0,67)/episodios por sesión en las TDE continuas (p = 0,001). Se hallaron diferencias significativas en la aparición de hipotermia, hipokalemia y transfusiones relacionadas a las TDE siendo todas ellas menores en la TDE nocturna (tabla). Pese a que el uso de líquidos con fósforo es más frecuente en las TDE continuas (58,5% versus 1,6%; p < 0,001) la incidencia de hipofosfatemia fue similar en ambos grupos.

Póster 614					
Complicaciones	TDE continua	TDE nocturna	р	OR	IC95%
Transfusiones+	43 (4,6%)	12 (1,8%)	0,003	0,38	0,20-0,74
Hipotermia*	98 (10,5%)	5 (0,7%)	< 0,001	0,07	0,03-0,17
Hipercalcemia°	7 (0,8%)	35 (5,2%)	p < 0,01	6,89	3,04-15,6
Hipokalemia§	34 (3,6%)	0 (0,0%)	p 0,025	0,02	0,00-0,33
Hipernatremia ^a	1 (0,1%)	0 (0,0%)	p NS		
Hipocalcemia [^]	5 (0,5%)	0 (0,0%)	p NS		
Hipomagnesemia [†]	11 (1,2%)	0 (0,0%)	p NS		
Hipofosfatemia [‡]	10 (1,1%)	0 (0,0%)	p NS		
Hiperkalemia**	15 (1,6%)	15 (2,2%)	p NS		
Acidosis metabólica	50 (5,4%)	30 (4,5%)	p NS		
Alcalosis metabólica π	4 (0,4%)	0 (0,0%)	p NS		

+Relacionada a la TDE; * < 33°; $^{\circ}$ < 0,6 mmol/L; $^{\circ}$ > 1,3 mmol/L; a > 150 mEq/L; † < 1,3 mg/dL; † < 1 mg/dL; ** > 6 mEq/L; § < 3 mEq/L; † pH < 7,20; pH > 7,60. NS: No significativo

Conclusiones: La TDE nocturna es una terapia segura, que presenta menos complicaciones que las TDE continuas.

615. ADN LIBRE CIRCULANTE EN PACIENTES CRÍTICOS CON FRACASO RENAL AGUDO TRATADOS CON TÉCNICAS CONTINUAS DE REEMPLAZO RENAL

Sánchez Morán F¹, Mateu Campos ML¹, Pérez Garrido S², Sastre Belloch J², Tormo Rodríguez L¹, Vidal Tegedor B¹, Albella Campesino A¹ v Medrano Encinas J¹

¹Hospital General Universitario de Castellón, Castellón. ²Universitat de València, Valencia.

Objetivos: Analizar el efecto de dos estrategias de anticoagulación del sistema extracorpóreo en la apoptosis en pacientes con fracaso renal agudo tratados con técnicas continuas de reemplazo renal (TCRR).

Métodos: Estudio bicéntrico, prospectivo, con asignación aleatoria en una relación 1:1 a heparina o citrato durante el tratamiento con TCRR. Se incluyeron 20 pacientes en los que se determinaron las concentraciones plasmáticas de ADN libre circulante (ADNIc) antes del inicio de la terapia, a los 60 minutos y a las 24 horas en muestras tomadas prefiltro y posfiltro. La determinación de ADNlc se realizó mediante citometría de flujo. Variables a estudio: Se recogieron variables epidemiológicas, de gravedad (SAPS 3 y SOFA), gravedad del FRA (KDIGO 3 y KDIGO < 3), concentración plasmática de ADNIc, duración de la terapia, mortalidad y dependencia de diálisis al alta de UCI y del hospital. Análisis estadístico: Las variables cuantitativas se expresan como media ± DE. Se utilizó la prueba de t de Student para muestras independientes para analizar las diferencias intergrupos (KDIGO 3 vs. KDIGO < 3) e intragrupo (KDIGO 3 o KDIGO < 3) según la modalidad de anticoagulación, y la prueba de t de Student para datos relacionados para las diferencias intergrupo (KDIGO 3 vs. KDIGO < 3) e intragrupo (KDIGO 3 o KDIGO < 3) por modalidad de anticoagulación. Se consideró un nivel de significación del 5% bilateral.

Resultados: Se recogieron datos de 20 pacientes tratados con TCRR. Los resultados se muestran en las tablas y en la figura.

Tabla 1. Comparación entre los grados de FRA de la concentración de ADN_{le} en los tiempos de estudio.

					ree wempe	o me entended			
								Intervalo de 95% para le	
KDIGO			N	Diferencia de	Diferencia de	-	Limite	Limite	
Tiempo	mpo I II I II medias	medias (I -II)	error estándar	Sig.	inferior	superior			
TO	<	3	7	13	532.629	228.349	.081	-73.169	1138.428
T1 pre	<3	3	7	13	448.450	334,358	.197	-254.010	1150.911
T1 post	<3	3	7	13	264.845	298.940	.387	-363.206	892.895
T2 pre	<3	3	7	9	179.734	378.946	.643	-633.025	992,492
Ti mest	-	- 1		. 0	595 701	166 220	147	-242 586	1414 171

ADN≥ en ng/ml. Comparación mediante la prueba de t de Student para muestras independientes.

Tabla 2. Variación de la concentración de ADN_k según el grado de FRA

								r confianza al la diferencia
KDIGO	Tie	Tiempo		Media de	Devriación		Limite	Limite
	1	11	N	diferencias	estindar	Ng.	inferior	superior
-0	T9	Ti per	7	-50.160	610.571	.835	-614,544	514,524
	T0	Ti post	7	104,349	131,676	.061	-17.432	226.129
	TI pre	Ti post	7	154,509	679.825	.569	-473.299	782.317
	T9	T2 per	7	-159.450	443.235	.378	-569.374	259,474
	10	T2 post	7	-485.629	421.500	.023*	-875.451	-95,806
	T2 per	T2 post	7	-326.179	375.554	.061	-673.508	21.151
3	TO	TI per	13	-134.339	156.558	.009*	-228.946	-39,732
	T9-	Ti post	13	-163.436	241.989	.431*	-309.669	+17.204
	T1 per	TI post	13	-29.097	192.711	.596	-145.551	87,357
	T0	T2 per	9	-546.182	539.680	.016*	-960,017	-131.348
	TO.	T7 post		-466,300	515.834	.027*	-862.806	-69,796
	T2 per	T7 post		79.881	470.248	.624	-281,584	441,346

Conclusiones: Los niveles de ADNlc fueron más bajos en el grupo de pacientes con mayor gravedad de FRA y en el grupo de citrato. Los valores de ADNlc demostraron capacidad predictiva de mortalidad en pacientes con FRA tratados con TCRR. La anticoagulación con citrato que podría reducir el daño celular y proteger del daño oxidativo en las TCRR.

estadística al nivel indicado

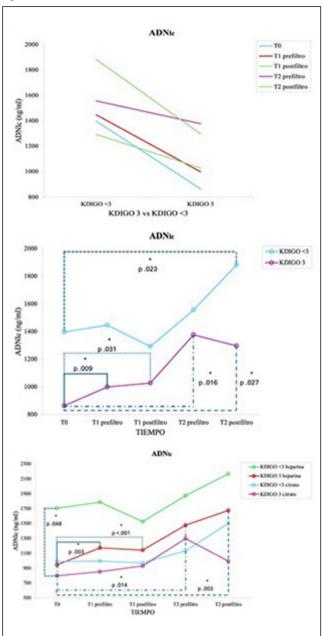
Tabla 3. ADNa en los tiempos de estudio según grado de FRA y anticoagulación baterrale de confluera al 15% para la diferes Limite Limite Sec. 413 475.144 -714 AND 1754,445 717.617 542,764 479.302 2112.236 43.905 400.426 400 Tell 907.958 -527.388 146,715 306.275 \$20.819 614.990 513.127 -548.294 1798.254 Ti pe 649.721 276 479.400 790.492 3460.852 905.634 474.415 -178.165 2008.214 175.712 430.712 -842.761 1194.185 341.106 409.712 1070.825 144 345 400 741 774 .779.767 1002.456 Ti pest 365,275 417,768 374 -579.146 1356.696 505,379 190.34 605,354 405.605 796 -388 122 1590.829 172,855 403.258 1124.40 212.679 30,40 -541.634 965.795 39.225 441,385 851 479.600 1057.065 17 per 741.416 401.410 -BOK 156 2297 360 272 576.536 525,454 463.975 1821.606 182,345 494,720 723 484.MI (150.987 -142,890 395,396 -1130,391 804.607 T] post 666,363 589.159 -849,719 2190.545 1174,226 506.675 -23.868 2372.324 173,549 533.161 -1197.657 681.613 471,276 432,977 1795,803 481,800

ADN, en ng/nl. Comparación mediante la prueba de t de Student para datos independientes. Oraço 1: Heparina KDIGO-3; Grupo 2: Heparina KDIGO 3; Grupo 3: Carato KDIGO <3; Grupo 4: Carato KDIGO 3. *: Significación estadística al nivel indicado.

Tabla 4. Variación del ADN_{is} según el grado de FRA y anticoagulación.

							Danier alle de	remitence of
							99% para la	diferencia
Crupe	The	-	×	Media de	Descripción	-	Limite	Limite
-	-		differencias	estinder	No.	inferior	superior	
1	79	Ti pre	4	-81,755	858,760	.861	-148.213	1294,743
	79	Ti post	4	169.015	112,699	.058	-89,314	348,344
	Ti per	Ti post	4	250.750	943.630	.402	-1259.777	1752.277
	79	72 pm	4	-169.908	597,234	.609	-1129.241	799.426
	79	T2 post	4	-463,920	419.253	.109	-0116.724	199.894
	17 pm	Y2 post	4	-294.013	409,863	247	-946,795	358,170
2	70	Ti pre		-327.477	101.367	.463*	-334.055	-121.299
	TO	TI post		-198.A32	53.068	<,000*	-254,344	-142,919
	Ti per	Ti post		29.045	101.680	.515	-77.662	135.752
	79	12 pre	4	-696.298	187.363	A14"	-784,305	-188,470
	79	T2 post	4	-683,668	152.792	.463*	406.793	446,542
	17 pm	T2 post	4	-297,560	299,354	.247	439,398	264.638
3	79	Ti pre	3	-8.060	86,817	.887	-223.724	207,604
	70	Ti post	3	18.127	115.972	.812	-268,965	306,218
	Ti per	Ti post	3	26.187	59.382	325	-121.326	173,790
	79	T2 pre	3	-145,707	212.007	.391	-721.843	436.830
	79	T2 post	3	-514,573	527.566	.233	-1825.119	795,973
	T2 per	T2 post	3	-349.067	407,816	.258	-1342.134	644,004
	79	Ti pre	7	-54306	155.918	.3102	-(195.443)	89,771
	79	Ti post	7	-133,269	335.363	.334	40.69	176,890
	Ti per	Ti post	7	-76,903	245.682	.424	-364,301	146.435
	79	T2 per	5	-594.098	241.479	.148	-1514.755	326,559
	70	T2 post	5	-210,406	635.449	.375	-1106,255	521.409
	T7 per	T2 post	5	301.690	490.577	.241	-307.443	918.821

ADNs, en tigliel. Comparación mediante la prueba de 1 de Sudant para muestras relacionadas. Origio 3: Hiparina KDIGO+1; Grupo 2; Hiparina KDIGO 3; Grupo 3; Ciruto KDIGO 42; Grupo 4; Caruto KDIGO 3, *; Significación estadística al sinel indicado.


616. UTILIDAD DEL [TIMP-2]·[IGFBP-7] PARA DETECCIÓN DE RIESGO DE FRACASO RENAL AGUDO PERSISTENTE Y NECESIDAD DE HEMODIÁLISIS

Valdés Garicano M¹, Ángeles Sistac D¹, Robles Conde l¹, Cuartero Sala M², Pérez Carrasco M³, Tomasa-Irriguible TM⁴, Díaz Buendía Y⁵, Sabater Riera J⁶, Betbesé Roig A¹ y Baldirà Martínez de Irujo J¹

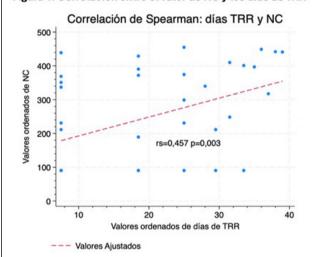
¹Hospital de la Santa Creu i Sant Pau, Barcelona. ²St Mary's Hospital-Imperial College Healthcare Nhs, London. ³Hospital Universitari Vall d'Hebron, Barcelona. ⁴Hospital Universitari Germans Trias i Pujol, Barcelona. ⁵Hospital del Mar, Barcelona. ⁶Hospital Universitari de Bellvitge, Barcelona.

Objetivos: Evaluar la utilidad del [TIMP-2] [IGFBP7] (Nephrocheck®), para diferenciar AKI (*Acute Kidney Injury*) transitorio y persistente, y predecir la necesidad de terapia de reemplazo renal (TRR).

Figura Póster 615

Métodos: Estudio observacional multicéntrico prospectivo en 5 Unidades de Cuidados Intensivos de hospitales universitarios de alta complejidad. Se incluyeron 455 pacientes críticos entre diciembre de 2017 y marzo de 2018. Se recolectaron datos demográficos, clínicos, niveles de sCr y puntuaciones SOFA, además de muestras de orina para medir Nephrocheck® (NC). AKI se clasificó según KDIGO; se definió AKI persistente aquel > 48 h y NC > 0,3 se consideró positivo. Se realizaron análisis estadísticos con pruebas paramétricas y no paramétricas, además de modelos de regresión logística para identificar factores de riesgo. El estudio fue aprobado por el Comité de Ética de la Investigación con medicamentos del Hospital de la Santa Creu i Sant Pau [IIBSP-TIM-2017-87].

Resultados: Los pacientes con NC alto (> 2) tuvieron mayor prevalencia de AKI persistente (70%, p = 0,005), necesidad de TRR (25%, p = 0,020) y mayor duración de TRR (14,2 días, p = 0,000) (tablas). También se observó correlación positiva entre NC y días de TRR (r = 0,457, p = 0,003) (fig.). Un NC > 2 tuvo una sensibilidad del 31% y una especificidad del 75% para el diagnóstico de AKI persistente, y una sensibilidad del 38% y una especificidad del 82% para la necesidad de TRR.


TABLA 1. Variables en función del valor de NC	TABLA 1	. Variables	en función	del valor	de NC
---	---------	-------------	------------	-----------	-------

	Total N= 455	NC bajo (< 0,3) n= 355 (78%)	NC Intermedio (0,3 – 2) n=80 (17,6%)	NC alto (>2) n=20 (4,4%)	р
Edad (años), Media (DE)	59,67 (15,88)	58,89 (16,49)	63,03 (12,89)	60 (14,44)	0,108
Mujeres, n (%)	260 (57,14)	195 (54,93)	52 (65)	13 (65)	0,199
SOFA inicial, Mediana (IRQ 25-75)	5 (3-8)	5 (3-8)	5 (3-9)	9 (5,5-11,5)	0,003
AKI, n (%)	234 (51,43)	169 (47,61)	46 (57,50)	19 (95)	0,000
AKI persistente, n (%)	167 (36,7)	122 (34,37)	31 (38,75)	14 (70)	0,005
TRR, n (%)	39 (8,57)	26 (7,32)	8 (10)	5 (25)	0,020
Duración de TRR (días), Media (DE)	4,53 (6,46)	2,84 (3,19)*	4 (2,92)8	14,2 (13,51)4,5	0,000
			ión mecánica; TRR: terapia de tivas en comparaciones por pa		

TABLA 2. Valores de NC y AKI persistente o requerimiento de TRR

Variables	Modelo no ajustado AKI persistente OR (IC 95%), nivel de significancia (p)	Modelo no ajustado para TRR OR (IC 95%), nivel de significancia (p		
NC positivo (>0,3)	1,56 (0,99- 2,45) p=0,052	1,89 (0,93-3,83) p= 0,077		
NC intermedio (0,3-2)	1,11 (0,67 - 1,82) p=0,676	1,21 (0,54 - 2,79) p= 0,616		
NC alto (>2)	4,3 (1,61-11,41) p=0,003	3,93 (1,34-11,47) p= 0,012		

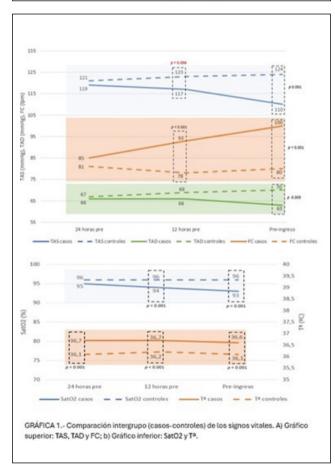
Figura 1. Correlación entre el valor de NC y los días de TRR

Conclusiones: Un valor de NC > 2 es un marcador temprano de AKI persistente y necesidad de TRR, además de correlacionarse con la necesidad de TRR más prolongadas.

617. IDENTIFICACIÓN DE DETERIORO CLÍNICO AGUDO (DCA) PREVIO AL INGRESO EN UCI Y E-HEALTH

Domínguez Curell C¹, Raja Yanes L¹, Lorenzo de la Peña L¹, Peña Díaz M¹, Jiménez Sosa A¹, Aranda Pérez G² y Lorente Ramos L¹

¹Hospital Universitario de Canarias (C.H.U. de Canarias), Santa Cruz de Tenerife. ²Profesor de la Universitat Oberta de Catalunya, Málaga.


Objetivos: Identificar un patrón que permita detectar precozmente al paciente con DCA. Analizar los signos vitales y parámetros analíticos de los pacientes previos al ingreso en UCI.

Métodos: Estudio observacional, retrospectivo, casos-controles (proporción 1:1). Población: pacientes de la planta de Hematología y Nefrología. Casos: pacientes que ingresaron en UCI con DCA. Controles: pacientes estables de dichas plantas. Variables: demográficas, clínicas y analíticas. Se realizó un análisis descriptivo y comparativo entre casocontroles (χ^2 , U de Mann-Whitney, Wilcoxon) y un algoritmo de *machine learning* no supervisado, tipo *clustering* (*K-means*), predeterminándose 2 clústeres; análisis con ANOVA. Estadísticamente significativo si p < 0,05.

Resultados: n = 156 pacientes: 78 casos y 78 controles. Mediante *clustering* se determinaron 2 grupos (tabla 1): de las variables incluidas en el proceso de cálculo (edad, signos vitales) fueron estadísticamente significativas: TAS 24 h (p < 0,001), TAS 12 h (p < 0,001), TAS preingreso (p < 0,001), TAD 24 h (p = 0,001), TAD 12 h (p < 0,001), TAD preingreso (p < 0,001), FC 24 h (p = 0,013), FC 12 h (p = 0,0.27) y FC preingreso (p = 0,032), coincidiendo el patrón del clúster 2 con el de los sujetos del grupo casos (DCA). No se incluyó en este análisis parámetros analíticos por la existencia de datos *missing*. También hubo diferencias estadísti-

camente significativas al comparar signos vitales y parámetros analíticos entre los casos y controles (fig., tabla 2).

	Cluster 1	Cluster 2	p -valor
Edad	62	58	ns
TAS 24h (mmHg)	134	109	p<0.001
TAS 12h (mmHg)	131	108	p<0.001
TAS preingreso (mmHg)	134	101	p<0.001
TAD 24h (mmHg)	70	63	p=0.001
TAD 12h (mmHg)	73	62	p<0.001
TAD preingreso (mmHg)	74	59	p<0.001
FC 24h (lpm)	79	86	p=0.013
FC 12h (lpm)	81	90	p=0.027
FC preingreso (Ipm)	85	94	p=0.032
Tª 24h (ºC)	36,3	36,4	ns
Tª 12h (ºC)	36,3	37,5	ns
Tª preingreso (ºC)	36,3	36,0	ns
SatO2 24h (%)	96	96	ns
SatO2 12h (%)	95	95	ns
SatO2 preingreso (%)	95	94	ns

Conclusiones: Se evaluó el uso de clustering en el reconocimiento precoz del DCA, identificando como variables de DCA precoz la hipotensión arterial y taquicardia. La anemia, trombocitopenia e hipertransaminasemia podrían también comportarse como signos preclínicos de DCA. Hacen falta nuevos estudios que permitan corroborar los hallazgos obtenidos y que incluyan variables analíticas en el clustering.

		48 horas pre	24 horas pre	Inmediatamente pr
11	Casos	29±6.9	28.5 ± 6.6	28.5±5
Hematocrito (%)	Controles	31.9 ± 6.9	33.1 ± 12.6	31.2 ± 6.3
p-valor		p 0.002	p 0.001	p 0.003
	Casos	8.9 ± 1.5	8.8 ± 1.7	8.8 ± 1.8
Hemoglobina (gr/dL)	Controles	10.5 ± 2.2	10.4 ± 2	10.2 ± 2.3
p-valor		p < 0.001	p < 0.001	p < 0.001
	Casos	9.1 ± 11.1	9.47 ± 11.74	11.25 ± 13.41
Leucocitos (x10 ¹ /mm3)	Controles	9.61 ± 9.49	9.5 ± 9.49	9.34 ± 9.46
p-valor		ns	ns	ns
	Casos	126 ± 118	121 ± 115	121 ± 111
Plaquetas (x10 ¹ /mm3)	Controles	163 ± 109	163 ± 113	164±113
p-valor		p 0.011	p 0.005	p 0.005
	Casos	83 ± 18	80 ± 18	72±19
Tiempo de protrombina (%)	Controles	79±12	79±17	76±19
p-valor		ns	ns	ns
	Casos	1.78 ± 1.91	1.73 ± 1.66	2.18 ± 2.24
Creatinina (mg/dL)	Controles	1.73±1.8	1.8 ± 1.98	1.73 ± 1.96
p-valor		ns	ns	p 0.045
	Casos	137±5	136 ± 16	138±5
Sodio (mEq/L)	Controles	138 ± 4	138±4	138±3
p-valor		p 0.023	ns	ns
p-vess.	Casos	4.1±0.7	4.1±0.8	4.2±1
Potasio (mEq/L)	Controles	4.3±0.7	4.2 ± 0.7	4.4±0.7
p-valor	Controlles	4.5±0.7	4.2 ± 0.7	p 0.023
press	Casos	41±43	41 ± 46	67 ± 128
GOT (U/L)	Controles	23 ± 25	32 ± 41	29±32
p-valor	Controlles	p 0.023	22 ± 41	p 0.001
p-valor	Casos	40 ± 34	77 ± 35	9 0.001 44 ± 40
GPT (U/L)	Controles	40 ± 34 20 ± 22	37±35 32±53	44±40 30±29
	Controles			
p-valor		p < 0.001	p 0.038	p 0.007
PCR (mg/L)	Casos	87.46 ± 93.26	93.79 ± 111.69	137.82 ± 115.05
to-	Controles	81.88 ± 112.49	74.95 ±78.62	76.81 ± 74.98
p-valor		ns	ns	ρ 0.01
PCT (ng/ml)	Casos	1.05 ± 0.59	2.2 ± 2.55	17.47 ± 32.2
	Controles	*******	*******	
p-valor		**********	********	

11:30-12:30 h

SALA MULTIUSOS 2

PÓSTERES ORALES

SEDACIÓN/ANALGESIA/DONACIÓN/ **TRASPLANTES**

Moderadoras: Elisabeth Navas Moya, Hospital Universitari Vall d'Hebron, Barcelona/ Sara Alcántara Carmona, Hospital Universitario Puerta de Hierro, Madrid

618. EVOLUCIÓN DEL ISOFLURANO COMO HIPNÓTICO DE PRIMERA LÍNEA EN UCI

Furró MDÀ¹, Rodríguez S¹, Carvalho S¹, González P², García B¹, Latorre R¹, Rodríguez P1, Pascual R1, Trujillano J1 y Caballero J1

¹Hospital Universitari Arnau de Vilanova, Lleida. ²Hospital Universitari Santa Maria, Lleida.

Objetivos: Describir el uso de isoflurano en el Servicio Territorial de Medicina Intensiva de la provincia de Lleida durante 2024.

Métodos: Estudio retrospectivo bicentro de una cohorte secuencial de pacientes con sedación inhalada con isoflurano en dos hospitales de Lleida durante 2024. Se analiza indicación, retirada, tolerancia, efectos secundarios, duración y uso concomitante de otros fármacos. Análisis de datos con SPSS (Mann-Whitney y chi-cuadrado).

Resultados: 133 pacientes (98 hombres; 73,7% y 35 mujeres; 26,3%), 113 en HUAV (85%) y 20 HUSM (15%). 88 pacientes con patología médica (66,2%), 32 quirúrgica (24,1%) y 13 politraumáticos (9,8%). Indicaciones: sedación moderada-profunda (RASS -3/-5,100%) por insuficiencia respiratoria grave como principal causa (72%). Isoflurano como hipnótico inicial (66,1%) o secundario (33,8%, sustituyendo a otros hipnóticos previos propofol 100%, midazolam 0%-, e incluye early switch (< 24 h sedación, 15,5%), tardío (> 24 h, 82,2%) y de rescate (para lograr objetivo RASS; 2,3%). Los pacientes con isoflurano de inicio (88; 66,1%) son principalmente médicos (69; 72,6%) por insuficiencia respiratoria (74; 77,9%, p 0,043).