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Abstract  Sepsis  is a  major  public  health  problem  and  a  leading  cause  of  death  in  the  world,
where delay  in the  beginning  of  treatment,  along  with  clinical  guidelines  non-adherence  have
been proved  to  be  associated  with  higher  mortality.  Machine  Learning  is increasingly  being
adopted in  developing  innovative  Clinical  Decision  Support  Systems  in many  areas  of  medicine,
showing a  great  potential  for  automatic  prediction  of  diverse  patient  conditions,  as  well  as
assistance  in  clinical  decision  making.  In  this context,  this  work  conducts  a  narrative  review  to
provide an  overview  of  how  specific  Machine  Learning  techniques  can  be used  to  improve  sepsis
management,  discussing  the  main  tasks  addressed,  the  most  popular  methods  and  techniques,  as
well as  the  obtained  results,  in terms  of  both  intelligent  system  accuracy  and clinical  outcomes
improvement.
© 2020  Elsevier  España,  S.L.U.  y  SEMICYUC.  All  rights  reserved.
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Mejora  en  el  manejo  de sepsis  mediante  técnicas  de aprendizaje  automático:  una

revisión

Resumen  La  sepsis  representa  un problema  de salud  pública  de primer  orden  y  es  una  de  las
principales  causas  de  muerte  a  nivel  mundial.  El retraso  en  el inicio  del  tratamiento,  junto  con  la
no adherencia  a  las  guías  de  práctica  clínica  se  asocian  a  una mayor  mortalidad.  El  aprendizaje
automático  o  machine  learning  están  siendo  empleados  en  el  desarrollo  de  sistemas  de  apoyo  a
la decisión  clínica,  innovadores  en  muchas  áreas  de  la  medicina,  mostrando  un  gran  potencial
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para  la  predicción  de diversas  condiciones  del  paciente,  así  como  en  la  asistencia  durante  el
proceso  de  toma  de decisiones  médicas.  En  este  sentido,  este  trabajo  lleva  a  cabo  una  revisión
narrativa para  proporcionar  una  visión  general  de cómo  las  técnicas  de machine  learning  pueden
ser  empleadas  para  mejorar  el  manejo  de  la  sepsis,  discutiendo  las  principales  tareas  que  tratan
de  resolver,  los  métodos  y  las  técnicas  más  empleados,  así  como  los resultados  obtenidos,  tanto
en términos  de  precisión  de  los  sistemas  inteligentes,  como  en  la  mejora  de  los  resultados
clínicos.
© 2020  Elsevier  España,  S.L.U.  y  SEMICYUC.  Todos  los derechos  reservados.

Introduction

Sepsis is  a  major  public  health  problem  and  a  leading  cause
of  death  in  the  world.  Although  it is  not  easy  to reliably
measure  incidence  and  mortality,1---4 most  of  the recent  data
shows  both  an  increase  in incidence  and  number  of  deaths
and  a  decrease  in  case-fatality.

In  addition  to  the difficulty  in  obtaining  reliable  data,
the  sepsis  definition,  first  established  in 1991  (Sepsis-1),
has  been  updated  in  2001  (Sepsis-2)  and  2016  (Sepsis-3),5---7

which  makes  temporal  comparison  difficult.  A  meta-analysis
that  includes  22  studies  published  in high-income  countries
between  1979  and  2015  shows  an incidence  of 288 hospital-
treated  sepsis  and 148 hospital-treated  severe  sepsis  per
100,000  person-year.8 When  only studies  of the last  decade
are  analyzed,  incidence  increases  to  437 hospital-treated
sepsis  and  270  hospital-treated  severe  sepsis  per  100,000
person-year.  Hospital  mortality  during  this  period  was  17%
for  sepsis  and 26%  for  severe  sepsis.

From  a  complementary  perspective,  in  Spain  the  inci-
dence  and  mortality  data  are very  heterogeneous.  Incidence
is  nearly  100  cases  per  100,000  person-year9 and  hospital
mortality  ranges  from 43%  to  under  20%.9---12

To  sum  up, although  the  numbers  vary,  data  seem  to
confirm  that  incidence  and  number  of  deaths  due  to  sepsis
increases  but  the case-fatality  decreases.

In a  separate  but  complementary  perspective,  it is  also
necessary  to  consider  the consumption  of  health  resources.
In  this  regard,  it has  been  published  that  mean  cost  per
severe  sepsis  episode  is  around  $20,000.13,14

Different  measures  have shown  a beneficial  impact  in
terms  of reducing  mortality,  and  together  with  improvement
in  Intensive  Care  Unit  (ICU) assistance,  are the cause  of
this  reduction.  To  improve  survival  of septic  patients,  these
measures  must  be  applied  as  soon  as  possible.  There  are
three  basic  mainstays  in  sepsis  management15,16:  (i)  early
administration  of adequate  antimicrobial  therapy,17,18 (ii)
resuscitation  with  fluids  and  vasopressors,19 and (iii)  source
control.20 Sepsis  bundles  have  been the  cornerstone  of  the
improvement  of  the quality  of  sepsis  care  since  2005.  Nowa-
days,  hour-1  sepsis  bundle  includes  five  measures  that  must
be  accomplished  in  the  first  hour  since  the suspicion  of
sepsis,21 underlining  the  importance  of  time  in sepsis  treat-
ment.

Despite  the  fact that  adherence  with  management  guide-
lines  has  been  related  with  mortality  reduction  in several

studies,  sepsis  bundles  compliance  is  low.22---24 In this con-
text,  different  approaches  have  been  tried  to  enhance
guidelines  compliance.  As an example,  educational  inter-
ventions  can  achieve  a  temporary  improvement  in  bundles
compliance  and, even,  a reduction  in  hospital  mortality,  but
this  impact  is  usually  transitory.25

Other  types  of interventions,  such  as  the  design  of detec-
tion  and  management  programmes  for sepsis  at the hospital
or  state  level26,27 show  similar  results  and  seem  to  be  cost-
effective.13

Recently,  a new  approach  to the  problem  of  sepsis  has
arisen,  based  on  the  application  of  new information  tech-
nologies.  These  initiatives  range  from  relatively  simple
systems  of  automatic  detection  of  sepsis, using  electronic
medical  record  data28,29 or  computerized  protocols,30 to
more  sophisticated  systems  based on  Big  Data  and Artificial
Intelligence  (AI)  designed  to detect  and  even  predict  sepsis
or  guide  clinical  decisions.

Concretely,  Machine  Learning  (ML),  a subfield  of  AI,  has
gained  attention  in the  sector  of  medicine.  ML  goes  beyond
classic  ‘‘expert  systems’’,  whose  rules  are  manually  coded
into  them,  by  creating  a new  generation  of  systems  built  by
‘‘learning’’  from  big  amounts  of data  and by  dealing  with  a
high  number  variables  simultaneously  in order  to  mimic  or
even  improve  human  clinical  decision  making.31 There are
applications  of  ML to  almost  all  medical  fields.  Some  recent
reviews  of the  use  of  ML  in  several  medical  areas  have  been
published,  including  medical  image  analysis,32 cardiovascu-
lar  medicine,33 in critical  care,34 or  neuro  oncology.35

Objectives

The  main  objective  of this  work  is  to  conduct  a  narrative
review  to  provide an  overview  of  how  specific  ML tech-
niques  can  be used  to  improve  sepsis  management,  focusing
on  the  following  specific  tasks:  detection,  prediction  of
sepsis/shock,  mortality  prediction,  hospital  stay,  costs  and
adherence  to  guides.  Non-AI  or  management  systems  for
sepsis  treatment,  as  well  as  non  ML-based  expert  systems,
fall  outside  the scope  of this  paper  and  have  not being
included  in the bibliographic  research  done.

This  review  has  been  designed  with  the  aim  of  being  use-
ful, mainly,  for  clinicians  wanting  to  know  how  ML could
help  them  in  their  daily  practice,  but  also  for  researchers
conducting  their  own  studies  applying  ML  to  any  sepsis  treat-
ment  related  task.  Keeping  this in mind,  five  main  questions
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of  interest  for  clinicians  have  been  defined  during  the design
phase  and  answered  in this  paper  after a  broad  biblio-
graphic  research.  For those  readers  with  no  background  in
ML,  a  brief  explanation  of the  main  ML  techniques  employed
in  the  papers  found  during  the  bibliographic  research  was
included.  In  addition,  the technical  information  of  the  stud-
ies  covered  in  this review,  such  as  the  frequency  at which
each  ML  technique  was  used to solve  different  tasks,  the
size  and  design  of  the  studies  or  the performance  results,
may  help  researchers  to  design  their  own  approaches  in  the
field.

Methodology

We  conducted  broad  queries through  different  search
engines,  including  PubMed,  Google  Scholar,  ResearchGate,
and  ScienceDirect,  using  the following  keywords:  sepsis,
machine  learning,  early,  prediction,  severe  sepsis,  mortal-
ity,  detection,  artificial  intelligence,  and  data  mining.  The
last  search  was  conducted  on November  7, 2019.

Titles  and  abstracts  of  the  initially  gathered  contribu-
tions  were  checked  to  exclude  those  papers  that  fall outside
the  scope  of  this  study,  such  as studies  related  to  neonatal
sepsis.  After  that,  34  papers  remained  from  international
conferences  and  renowned  journals  published  in the last  13
years  (2007-November  2019).  From  the careful  reading  of
the  selected  contributions,  three  main  tasks  were initially
identified  as  the fundamental  objective  related  to  sepsis
management:  (i)  sepsis  detection,  focused  on  the identifi-
cation  of  septic  patients,  (ii) sepsis  prediction,  focused  on
determining  which patients  are in risk  of  developing  sepsis,
and  (iii)  mortality  prediction,  focused  on  determining  which
septic patients  are  in risk  of  death.  Table  1  summarizes  the
type  techniques  proposed  in  the  reviewed  papers  for  dealing
with  these  tasks.

Supplementary  material  S1  provides  a  detailed  view  of
the  main  features  that  characterize  all  the  included  studies,
while  Tables  2---4  contain  information  about  the  ML  tech-
niques  and  features  used  on  each study  and  the performance
results  achieved  for the different  tasks.

Based  on  the study  of  the aforementioned  papers,  the
following  section  introduces  the main  ML  concepts  and  algo-
rithms  used  in  these  papers.  This  section  is  followed  by  five
sections  that try  to  answer  key  questions  specifically  related
to  actual  challenges  present  in sepsis  management.  The
information  provided  is  of  special  relevance  to  researchers
who  want  to  contribute  advances  in  the  area.

Machine learning overview

ML  is a  discipline  of  the  AI field  focused  on  making  machines
able  to  do  tasks  without  being  explicitly  programmed  for
them.  To do  so, algorithms  need  to  be  trained,  which,
depending  on  the algorithm,  can  be  done  by analyzing  sam-
ple,  or  training,  data  or  by  iteratively  developing  a strategy
for  solving  problems  based on  rewards  or  punishments.
Among  the  different  types  of learning  strategies,  one  of the
most  widely  used  is  supervised  learning.  Here,  the  objective
is  to create  a  model  able  to  predict  some  output  value  given
a  set  of  input  variables.

For example,  to  predict  the malignant  (vs.  benign)  condi-
tion  of  a given  tissue  given  some  morphological  variables,
patient  data  or  even  the specimen’s  image.  If  the output
variable  is  limited  to  a known  set  of  values,  the  task  is
called  classification,  whereas  if the  prediction  should  be
any  numerical  value  within  a range,  the  objective  is  to  do a
regression.68 In supervised  learning,  algorithms  need  a  set  of
resolved  samples,  that  is,  data  including  the  input  variables
values  along  with  the correct  output.  Once  trained,  these
algorithms  can make  predictions  over  new  samples.

Following,  we  briefly  explain  the main  supervised  ML
algorithms  used in the  studies  reviewed  in this  work.

Artificial  Neural  Networks  (ANN)  are inspired  in the way
that  neurons  in a human  or  biological  brain  work.  An  ANN is
an  interconnected  group  of  nodes (artificial  neurons)  sepa-
rated  into,  at  least,  three  layers:  (i)  input,  that receives  the
sample  data,  (ii)  hidden,  that transforms  the  input  values,
and  (iii)  output,  that  provides  the  final  prediction  for each
sample.  However,  it  is  very  common  to  have  more  than  one
single  hidden  layer,  as  more  layers  increase  the  ability  of  the
ANN  to learn  more  complex  problems.  Fig.  1a  represents  a
simple  ANN  with  six  input  neurons,  each one correspond-
ing  with  a variable,  one  hidden  layer  with  three  neurons,
and an output  layer  with  a single  neuron  that  outputs  the
sepsis  probability.  As  can  be  seen, nodes  on  each  layer  are
connected  with  all  the  nodes  on  the next layer.  These  con-
nections  are  usually  initialized  with  a random  weight.  The
output  layer  is  typically  configured  to  have  a node  for  each
possible  output  condition,  and  the activation  level  of  each
of  these  nodes  for  a sample  corresponds  with  the proba-
bility  of  the sample  to belong  to the condition  associated
with  the node.  During  the training,  the connection  weights
are  adjusted,  so  that  input  values  can be  transformed  into
the  expected  output  by  successively  applying  mathemati-
cal  transformations  based  on  the connection  weights.  ANN
classifiers  generally  have  good  performance,  however,  they
are  complex  to  configure,  costly  to  train,  and  difficult  to
interpret.

Support Vector Machines  (SVM)  treat  each  sample  as  a
point  in  a n-dimensional  space and  try  to  find a hyper-
plane  that  separates  samples  from  two  different  conditions.
For  this  reason,  SVM  are  considered  binary  classifiers,  as
they  can  only  classify  data  with  two  possible  outputs.  How-
ever,  there  are several  strategies  to  use  SVM in problems
with  more  than  two  possible  outputs  by  combining  several
SVM  classifiers.  Fig.  1b  represents  a  simple SVM with  two
input  variables (i.e.  temperature  and heart  rate).  During
the  training,  hyperplane  parameters  are  adjusted  to  max-
imize  the  margin  between  the  hyperplane  and  the samples
with  different  outputs.  SVM  classifiers  generally  have good
performance,  however,  they  are  complex  to  configure  and
trained  classifiers  are difficult  to  interpret.

Logistic  Regression  (LR)  takes  its  name  from  the logis-
tic  function  on  which  it  is  based.  Like  SVM,  LR  algorithms
are  considered  binary  classifiers,  but, in  this case,  the out-
put  will  be close  or  equal to  0  for  one  condition  and  close
or  equal  to  1  for the other  condition.  Fig.  1c represents  a
simple  LR  with  a  single  input  variable  (i.e. heart  rate).  In
this example,  the  sepsis  probability  increases  with  the heart
rate, however  this variable  is  not  enough  to  predict  sepsis,
and some  samples  are misclassified.  There  is  a general-
ized  LR  for  multiple  condition  problems  named  Multinomial
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Table  1  Main  tasks  comprising  sepsis  management  with  reference  to  ML  approaches  used  by  the  reviewed  studies.

Task  ML  technique  References

Sepsis  detection Artificial  Neural  Networks (36)  (37)  (38)
Bayesian (39)  (40)
Decision Trees  (39)  (41)  (42)  (43)  (44)  (45)
Logistic Regressions  (46)  (47)
Support Vector  Machines  (39)  (48)  (49)  (50)

Sepsis
pre-
dic-
tion

Artificial Neural  Networks  (37)  (38)  (51)  (52)  (53)  (54)
Decision Trees  (41)  (55)  (56)  (45)  (57)
Other Techniques  (55)  (58)  (51)

Mortality
pre-
dic-
tion

Artificial  Neural  Networks  (59)  (60)
Bayesian (61)  (62)
Decision Trees  (63)  (64)
Logistic Regressions  (65)  (59)  (63)
Support Vector  Machines  (59)  (61)  (66)  (64)
Other techniques  (67)  (64)

Logistic  Regression.  During  the training  process,  the  coef-
ficients  of  the  function  used  to  generate  the  output  are
adjusted,  so  that  the  output  value  is  as  close  as  possible  to
0  or  1 for  each  condition.  Despite  of  its  name,  LR  is  used  in
classification  problems.  LR classifiers  perform  well  on  linear
separable  problems  and  are simple  to  configure  and  train.
However,  trained  classifiers  are difficult  to  interpret.

A  Decision  Tree  (DT)  algorithm  has  the  internal  structure
of  a  tree  graph,  where  each  branch  node  evaluates  a  vari-
able  of  the  sample,  each edge  represents  a  possible  outcome
of  the  evaluation  and  each  leaf  node  represents  a  possible
outcome.  Fig.  1d  represents  a  simple  DT  that  determines
if  a  patient  is  septic  following  the sepsis-3  definition.  The
structure  of  the  tree,  including  the number  of nodes,  the
condition  evaluated  on each node  and  the value  of each
edge,  is determined  during the training  process.  A  special
type  of  DT is  the  Random  Forest  (RF),  which  is  not  strictly  a
tree  but  a  set  of  DTs  that  use  different  variables  of the  sam-
ples.  The  final  outcome  of  a  RF  is  an  average  of  the  internal
trees  outputs,  usually  the mode,  for  classification,  and the
mean,  for  regression.  RF  classifiers  generally  have  high  per-
formance,  they  are easy  to  configure  and  it is  possible  to
get  some  useful  information  to  interpret  trained  classifiers,
such  as  the  importance  of the variables.

Bayesian  algorithms,  such as  Naïve  Bayes  (NB)  or  Bayesian
Network  (BN),  are  based  on  Bayes’  theorem,  which  describes
the  probability  of  an event,  based  on  prior  knowledge  of
conditions  that  might  be  related  to  the event.  This  kind  of
algorithms  use  the training  data  to  estimate  the  probabilities
of  each  possible  output  based  on  the  values  of  the variables
of  the  training  samples.  NB  assumes  variable  independence,
which  is  not  required  by  the  BN. Bayesian  algorithms  are
mainly  used  in text-based  problems,  although  they  can be
used  in  many  other  domains.  They  are  easy  to  configure  and
the  trained  classifiers  are interpretable.

What are  the  key  variables to build a clinical
decision support system to assist in sepsis
management?

Taking into  consideration  the conducted  review,  and  focus-
ing  the  attention  on  the  three  main  tasks  identified  in
Table  1  (i.e.  sepsis  detection,  sepsis  prediction,  and  mor-
tality  prediction),  we  can  see  there  are four  different  but
complementary  sources  of  information  that  are of  utmost
importance.  First  of  all, a  substantial  number  of  papers  men-
tion  vital  signs  (e.g.  as  heart  rate  (HR),  respiratory  rates
(RR),  temperature  (Temp),  blood  pressure  (BP), oxygen  satu-
ration  (SaO2),  etc.),  and  laboratory  tests  (e.g.  renal  and  liver
function,  lactate  level,  coagulation  profile,  etc.).  Addition-
ally,  certain  patient  characteristics  (e.g.  age,  nationality,
comorbidities)  are  taken  into  consideration  to  hypothesize
different  scenarios,  whilst  different  severity  scores  such  as
SOFA  (Sequential  Organ  Failure  Assessment),  APACHE  (Acute
Physiology  and  Chronic  Health  Evaluation),  qSOFA  (Quick
Sequential  Organ  Failure  Assessment),  or  MEWS  (Modified
Early  Warning  Scoring)  are also  used by  multiple  systems.
Furthermore,  some  works  emphasize  the need  to  analyze
complementary  sources  of information  containing  unstruc-
tured  text  such as  nursing  and  medical  notes,  comments
from  different  departments  and  personal  of  emergency  with
the  goal of  identifying  clues about  patients  with  sepsis.48

From  a complementary  perspective,  some works  indicate
that  a better  management  of  clinical  and administrative
databases  containing  supplementary  patient  information  is
necessary  to  facilitate  an automated  prediction.38,46,58,63

In this  line,  the  Electronic  Health  Records  (EHR),  already
available  in some  centres  and  ICUs,  eases  the compilation,
interchange,  comparison,  and  effective  use  of medical  infor-
mation  between  different  departments.
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Table  2  Main  characteristics  of  the  ML  classifiers  used  for  sepsis  detection.

Ref  ML  type Variables  Patients  AUC  (CI  95%)  Sensitivity
(Sen)

Specificity  (Sp)

Mao  et  al.,
201842

GTB  6 (SaO2,  HR,  SBP,  DBP,  T◦, and  RR)  ED,  hospital
wards  and  ICU
patients

Sepsis:  0.92
(0.90---0.93)
Severe  sepsis:
0.87
(0.86---0.88)
Septic  Shock:
0.9992
(0.9991---0.9994)

(Sen  fixed  near
0.80):
Sepsis:  0.95
(0.93---0.97)
Severe  sepsis:
0.85
(0.84---0.86)
Septic  shock:
0.9990
(0.9987---0.9993)

(Sp  fixed  near
0.80):
Sepsis:  0.98
(0.96---1.00)
Severe  sepsis:
0.996  (0.989---1.00)
Septic  shock:  1.00
(1.00---1.00)

Gonçalves
et al.,  201339

DT  NB  SVM  9 (bilirubin,  creatinine,  glucose,
leukocytes,  platelets,  HR,  MBP,  SBP,
and  T◦)

ICU  DT:  1.00
NB:  0.9982
SVM:  1.00

DT:  1.00
NB:  1.00
SVM:  1.00

DT:  1.00
NB:  0.9990
SVM:  1.00

Futoma et  al.,
201738

MGP-RNN  (LSTM)  77  (34  physiological  variables  (6 vital
signs,  28  laboratory  values),
35  covariates  (29  comorbidities  and
other 6), and  8 medication  classes)

Hospital  >0.90

Horng et  al.,
201748

SVM  12  (age,  gender,  acuity,  SBP, DBP,  HR,
Pain Scale,  RR,  SaO2,  T◦,  free  text
chief  complaint,  and free  text
nursing  assessments)

ED  patients  Vitals:  0.67
CC: 0.83
BoW:  0.86
Topics:  0.85

Vitals:  0.56
CC: 0.75
BoW:  0.78
Topics:  0.80

Vitals:  0.68
CC:  0.75
BoW:  0.79
Topics:  0.75

Tang et  al.,
201049

SVM  3 (Non-invasive  cardiovascular
variables:  ECG,  Fin-PPG,  and
Ear-PPG)

ED  patients
with  SIRS

Severe  sepsis:
0.78

0.9444  0.6250

Faisal et  al.,
201847

LR  19  (First  electronically  recorded  vital
signs and  blood  test  results)

ED  patients  Sepsis:  0.7908
Severe  sepsis:
0.9036

Sepsis:  0.5434
Severe  sepsis:
0.5306

Wang X.  et  al.,
201836

KELM  5 (d-xylose,  acetatic  acid,  linoleic
acid,  d-glucopyranosiduronic  acid,
and  cholesterol)

ED  and  ICU
patients

0.8957  0.6577

Nachimuthu
et al.,  201240

DBN  10  (WBC,  %  of  immature
neutrophiles,  HR,  MBP,  DBP,  SBP, T◦,
RR, PaCO2,  and  age)

ED  patients  First  3  h:
0.91102
First  6  h:
0.91499
First  12  h:
0.93362
First  24  h:
0.94353

First  3  h:
0.68902
First  6  h:
0.70732
First  12  h:
0.81707
First  24  h:
0.85976

First  3  h:  0.94881
First  6  h:  0.94994
First  12  h:  0.94881
First  24  h:  0.94539
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Table  2 (Continued)

Ref  ML  type  Variables  Patients  AUC  (CI  95%)  Sensitivity
(Sen)

Specificity  (Sp)

Desautels
et  al.,  201641

GTB  8 (age,  HR,  DBP,  SBP, T◦, RR,  SaO2,
and GCS)

ICU  0.88  ±  0.006  0.80  0.80

Kam, H.J.  and
Kim,  H.Y.,
201737

DFNLSTM  9 (pH,  SaO2, WBC,  HR,  SBP,  PP, T◦,
RR, and  age)

SIRS  criteria
(hospital  and
ICU)

LSTM:  0.99  LSTM:  0.97  LSTM:  1.00

Back et  al.,
201646

LR  7 (HR,  DBP,  T◦,  RR,  age,  admission  via
ED,  LOS)

Hospital  Test/Validation
0.96/0.95

Test/Validation
0.96/0.77

Test/Validation
0.83/0.96

Arvind et  al.,
201850

SVM  Clinical  notes  ICU
post-surgical
patients

0.82  0.79  0.85

Delahanty
et al.  201943

GTB  13  (8 laboratory  results,  3 vital  signs,
2 ‘‘engineered’’)

ED  patients  Time  after  an
index  timea:
0.93 at  1 h
0.95  at  3 h
0.96  at  6 h
0.97  at  12  h
0.97 at  24  h

Time  after  an
index  timea:
0.68  at 1  h
0.72  at 3  h
0.75  at 6  h
0.79  at 12  h
0.85  at 24  h

Time  after  an
index  timea:
0.96  at 1  h
0.97  at 3  h
0.97  at 6  h
0.96  at 12  h
0.96  at 24  h

Calvert et al.,
201944

GTB  6 (DBP,  SBP,  HR,  T◦,  RR,  SpO2)  High-risk
patients
(age  ≥ 45  years
and length-of-
stay  ≥  4
days)

0.917  0.799  0.860

Barton et  al.,
201945

GTB  6 (SaO2,  HR,  SBP,  DBP,  T◦,  and  RR)  Hospital,  ICU,
ED  patients

0.88  0.80  0.78

Table’s acronyms and abbreviations:
AUC: area under curve; CI: confidence interval; BoW: bag of  words; CC: classifier chains; AUROC: area under the receiver operating characteristic curve; DBN: dynamic Bayesian network;
DFN: deep feedforward networks; GTB: gradient tree boosting; DT: decision tree; LR: logistic regression; LSTM: long short term memory; KELM: kernel extreme learning machine; ML:
machine learning; MGP: multiple-output gaussian process; NB: naïve bayes; RNN: recurrent neural network; SVM: support vector machines.
DBP: diastolic blood pressure; Ear-PPG: ear photoplethysmography; ECG: electrocardiogram, ED: emergency department; ICU: intensive care unit; SIRS: systemic inflammatory response
syndrome; Fin-PPG: finger photoplethysmography; GCS: glasgow coma scale; HR: heart rate; LOS: length of  stay; MBP: mean blood pressure; PaCO2: partial pressure of carbon dioxide;
PP: pulse pressure; RR: respiratory rate; SaO2:  oxygen arterial saturation; SBP: systolic blood pressure; T◦: temperature; WBC: white blood cells.
NS: no specified.
Index time.

a The time which the  first vital sign or laboratory result was documented in the EHR.
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Table  3  Main  characteristics  of  the  ML  classifiers  used  for  sepsis  prediction.

Ref  ML  type  Variables  Objectives  Patients  AUC  (CI 95%)  Sensitivity
(Sen)

Specificity  (Sp)

Desautels
et  al.,  201641

GTB  8  (age,  HR,  DBP,  SBP,  T◦,
RR, SaO2, and  GCS)

Sepsis
prediction

ICU  4  h  before  sepsis:
0.74  ± 0.010

0.80  0.54

Futoma et  al.,
201738

MGP-RNN
(LSTM)

77  (34  physiological
variables,  35  covariates
and 8  medication
classes)

Sepsis
prediction

Hospital  2  h  before:  ∼0.87
4  h  before:
∼0.84
6  h  before:  ∼0.82
12  h  before:  ∼0.77

Kam, H.J.  and
Kim,  H.Y.,
201737

DFN
LSTM

9  (pH,  SaO2,  WBC,  HR,
SBP,  PP,  T◦,  RR,  and  age)

Sepsis
prediction

SIRS  criteria
(hospital  and
ICU)

LSTM  1 h  before:  0.96
LSTM  2 h  before:  0.94
LSTM  3 h  before:  0.929
DFN100  3  h  before:  0.915

LSTM  1  h
before:  0.92
LSTM  2  h
before:  0.89
LSTM  3  h
before:  0.914
DFN100  3  h
before:  0.886

LSTM  1  h
before:  1.00
LSTM  2  h
before:  1.00
LSTM  3  h
before:  0.944
DFN100  3  h
before:  0.944

Wyk et  al.,
201857

RF  8  (HR,  RR,  SBP,  DBP,  T◦,
SpO2, WBC,  LOS)

Sepsis
prediction

ICU  patients  1  h  before:  0.7  1  h before:  0.8  1  h  before:  0.6

Nemati et al.,
201858

Weilbull-Cox
Hazards
Model

65  (30  laboratory  values,
6  high-resolution
dynamical  features,  10
clinical  features,  19
demographics/context
features)

Sepsis
prediction

ICU  patients  4  h  before:  0.84
6  h  before:  0.82
8  h  before:  0.82
12  h  before:  0.79

Fixed  at  0.85  4  h  before:  0.64
6 h  before:  0.62
8 h  before:  0.62
12 h before:
0.57

Wang, R.Z.
et  al.,  201855

LR
SVM
LMT

12  (P,  Ca,  Mg,  BUN,  Hb,
Platelets,  WBC,  INR,
Alkaline  Phosphatase,
HR,  SBP,  and  SaO2)

Sepsis
prediction

ICU  patients  6  h  before:
LR:  0.685
SVM:  0.674
LMT:  0.750

6  h before:
LR:  0.752
SVM:  0.566
LMT:  0.671

6  h  before:
LR:  0.618
SVM:  0.783
LMT:  0.830

Giannini et  al.
201956

RF  587  (demographics,  vital
signs  and  laboratory
results)

Sepsis
prediction

Hospital  wards  0.88  0.26  0.98

Schamoni.
et al.,  201951

LiR
MLP

57  (42  vital  signs  and
laboratory  results,  3
demographic,  10
pre-existing  conditions)

Sepsis
prediction

ICU  patients  LiR:
0.808  (0.786---0.830)
12---8 h  before  sepsis
onset
0.770  (0.739---0.801)
24---12  h
MLP:
0.817  (0.789---0.844)
12---8 h  before
0.776  (0.739---0.811)
24---12  h  before
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Table  3 (Continued)

Ref  ML  type  Variables  Objectives  Patients  AUC  (CI 95%)  Sensitivity
(Sen)

Specificity  (Sp)

Barton  et  al.,
201945

GTB  6 (SaO2,  HR,  SBP,  DBP,
T◦, and  RR)

Sepsis
prediction

Hospital,  ICU,
ED  patients

0.84  24  h before  sepsis
onset
0.83  48  h before  sepsis
onset

0.80  24  h
before  sepsis
onset
0.84  48  h
before  sepsis
onset

0.72  24  h
before  sepsis
onset
0.66  48  h
before  sepsis
onset

Scherpf et  al.,
201952

RNN  10  (age,  DBP,  SBP,  pH,
SaO2,  T◦,  HR,  RR,  PaCO2,
WBC)

Sepsis
prediction

ICU  patients  3  h  before:  0.81
(0.78---0.84).

(Sp  fixed:  0.90)
3  h  before:  47.0
6  h  before:  44.9
12 h  before:
46.3

(Sen  fixed  at
0.90)
47.0  (95%  CI:
43.1%---50.8%)

Kaji et  al.,
201953

LSTM
RNN

119  (demographic  data,
vitals,  labs, and
treatment)

Sepsis
Prediction

ICU  patients  Same-day  sepsis:  0.952
Next-day  sepsis:  0.876

Same-day
sepsis:  0.73
Next-day
sepsis:  0.57

Fagerström
et al.,  201954

LSTM 24  (demographic  data,
vital  signs,  laboratory
results,  treatment)

Sepsis
prediction

ICU  patients  0.83  (48  h  before)

Mao et  al.,
201842

GTB  6 (SaO2,  HR,  SBP,  DBP,
T◦, and  RR)

Sepsis  severity
prediction

Septic  patients
in ED,  hospital
wards  and  ICU

4 h  before
Severe  sepsis:  0.85
(0.79---0.91)
Septic  shock:  0.96
(0.94---0.98)

Lin et  al.,
201869

LSTM 43  (6 vital  signs,  11
laboratory  values,  4
treatment,  18  culture
results  and  4 other)

Sepsis  severity
prediction

Hospital
patients  with
suspected
infection

12  h  before  septic  shock:
0.9411

12  h  before
septic  shock:
0.8408

Liu et  al.,
201970

GLM
XGBoost
RNN

32  (13  vital  signs,  12
laboratory  results,  7
treatment)

Septic  shock
prediction

ICU  patients
with  suspected
infection

GLM:  0.82
XGBoost:  0.83
RNN:  0.85

GLM:  0.85
XGBoost:  0.77
RNN:  0.79

GLM:  0.73
XGBoost:  0.73
RNN:  0.77

Median  early  warning  time:  GLM:  9.5  h  XGBoost:  9.0  h RNN:  10.3  h

Table’s acronyms and abbreviations:
AUC: area under curve; CI: confidence interval; DFN: deep feedforward networks; GTB: gradient tree boosting; LiR: linear regression; LR: logistic regression; LMT: logistic model tree; LSTM:
long short term memory; GLM: generalized linear model; XGBoost: extreme gradient boosting; ML: machine learning; MGP: multiple-output gaussian process; MLP: multilayer perceptron;
RF: random forest; RNN: recurrent neural network; SVM: support vector machines.
BUN: blood urea nitrogen; Ca: Calcium; DBP: diastolic blood pressure; Ear-PPG: ear photoplethysmography; ED: emergency department; ICU: intensive care unit; SIRS: systemic inflammatory
response syndrome; GCS: glasgow coma scale; Hb: haemoglobin; HR: heart rate; INR: international normalized ratio; LOS: length of stay; Mg: magnesium; MBP: mean blood pressure; P:
phosphorus; PaCO2: partial pressure of carbon dioxide; PP: pulse pressure; RR: respiratory rate; SaO2: oxygen arterial saturation; SBP: systolic blood pressure; T◦: temperature; WBC:
white blood cells.
NS: no specified.
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Table  4  Main  characteristics  of  the  ML  classifiers  used  for  mortality  prediction.

Ref  ML  type  Variables  Patients  AUC  (CI  95%)  Sensitivity  (Sen)  Specificity  (Sp)

Ribas  et  al.,
201265

LR 34  (demographic,
comorbidities,  organ
function,  treatment,
infection).  First  24  h  of
evolution

Severe  sepsis
admitted  to
ICU

0.75  0.64  0.84

Gultepe et al.,
201461

NB
SVM

5  (Lactate,  MBP,  RR,  T◦,
and  WBC)

Hospital
patients  with
SIRS

NB:  0.660  ± 0.050
SVM: 0.726  ±  0.045

NB:  0.879
SVM:  0.949

NB:  0.385
SVM:  0.308

Tsoukalas
et al.,  201566

SVM 5 (T◦,  RR,  WBC,  MBP,  and
lactate)

Patients  with
SIRS

0.61

Taylor et  al.,
201663

RF
CART
LR

>500  (demographic,
previous  health  status,
ED health  status,  ED
services  render,  and
operational  details)

ED  septic
patients

28  days mortality
RF: 0.860  (0.819---0.900)
CART:  0.693
(0.620---0.766)
LR:  0.755  (0.689---0.821)

Byrne et  al.,
201659

LR
MLP
SVM

939  peptides  from
LC-MS/MS  at < 16  h  and
48  h  after  septic  shock
diagnosis.

ICU  patients
with  septic
shock

<16  h  after  shock
diagnosis:
LR:  0.7415
MLP:  0.7222
SVM:  0.8394
48  h  after  shock
diagnosis:
LR:  0.9710
MLP:  0.9928
SVM:  1.0000

<16  h  after  shock
diagnosis:
LR:  0.5556
MLP:  0.4444
SVM:  0.7222
48  h  after  shock
diagnosis:
LR:  1.0000
MLP:  1.000
SVM:  1.0000

<16  h  after
shock
diagnosis:
LR:  0.9275
MLP:  1.0000
SVM:  0.9565
48 h after  shock
diagnosis:
LR:  0.9420
MLP:  0.9855
SVM:  1.0000

Wang T.  et  al.,
201862

DBN  24  (age,  8  vital  signs,  12
laboratory  test,  GCS,  2
treatments)

Infected
ICU-patients

0.913  (0.906---0.919)  0.825
(0.802---0.849)

0.874
(0.802---0.849)

García-Gallo
et al.,  201867

LASSO
SGB

47  (14  laboratory  tests,  9
vital  signs,  4 data  taken
at the  time  of  ICU
admission,  14
comorbidities,  and 6
organ  dysfunction)

ICU  patients
with  sepsis

LASSO:  0.792
(0.791---0.793)
SGB:  0.8039
(0.8033---0.8045)

Chiew et  al.,
201964

kNN
RF
AB
GTB
SVM

28  (6  vital  signs,  22  HRV
parameters)

ED  patients  kNN:  0.06
RF:  0.56
AB:  0.38
GTB:  0.50
SVM:  0.63
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Table  4 (Continued)

Ref  ML  type  Variables  Patients  AUC  (CI  95%)  Sensitivity  (Sen)  Specificity  (Sp)

Perng  et  al.,
201960

RF
kNN
SVM
SoftMax
Combined  with  three
feature  extraction
methods:
CNN
AE
PCA

53  (demographic  data,
vital signs,  laboratory
results)  obtained  during
ED  stay

ED  patients  72  h  mortality  ---  Best
Classifier:
CNN  +  SoftMax:  0.94
28  days mortality  ---  Best
Classifier:
CNN +  SoftMax:  0.92

Table’s acronyms and abbreviations:
AUC: area under curve; CI: confidence interval; AB: adaptive boosting; AE: auto encoder; CART: classification and regression tree; CNN: convolutional neural network; DBN: dynamic Bayesian
network; GTB: gradient tree  boosting; LASSO: least absolute shrinkage and selection operator; SGB: stochastic gradient boosting; LR: logistic regression; kNN: k-nearest neighbours; ML:
machine learning; MLP: multilayer perceptron; NB: naïve bayes; PCA: principal component analysis; RF: random forest; SVM: support vector machines.
Ca: calcium; DBP: diastolic blood pressure; Ear-PPG: ear photoplethysmography; ED:  emergency department; ICU: intensive care unit; SIRS: systemic inflammatory response syndrome;
GCS: glasgow coma scale; HRV: heart rate variability; MBP: mean blood pressure; RR: respiratory rate; T◦:  temperature; WBC: white blood cells.
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Figure  1  Graphic  representation  of simple  classifiers  from  different  families:  (a)  an  ANN  classifier  with  one hidden  layer,  (b) a
bi-dimensional SVM,  (c)  a  LR  with  one  input  variable,  and  (d)  a  simple  DT.

Can  sepsis  be  automatically detected  earlier
through the use of ML techniques?

Sepsis  is  a  time-dependent  syndrome,  which  implies  that
the  sooner  we  start treatment,  the  better  the  prognosis.15,18

Although  many  efforts  have  been  carried  out  in order  to
establish  and  update  a  precise  definition  of  sepsis,5---7 the
current  identification  of  septic  patients  remains  trouble-
some.  An  accurate  sepsis  detection  system  may  change  the
way  we  approach  its treatment.

Of  the  34 works  covered  in the present  study,  15 of
them  explicitly  deal  with  the task  of automatically  detect
sepsis.36---42,46---50 Main  features of  the  most  relevant  works  are
commented  hereunder.

Mao  et  al.42 developed  a ML-based  system  (called  InSight)
that  recognizes  sepsis using  only  six common  vital signs
taken  from  the  EHR  of  Emergency  Department  (ED),  ICU
or  hospital  wards  patients  (SaO2,  HR,  diastolic  blood  pres-
sure  (DBP),  systolic  blood  pressure  (SBP),  Temp,  and  RR).

The  authors  reported  that  InSight  works  correctly  despite
a  significant  amount  of missing  patient  data.  Faisal  et al.47

developed  a LR  model  to  predict  the risk  of  sepsis  using  only
the first  electronically  recorded  vital  signs  and  adding  first
blood  test  results  obtained  following  emergency  medical
admission,  with  good  performance.  Horng  et  al.48 demon-
strated  that  the  use  of  free  text,  in addition  to vital  signs and
demographic  information,  allows  for an increase  in the  abil-
ity  of identifying  infection  at ED triage.  Delahanty  et al.43

and Barton  et  al.45 showed  us  that  ML based  models  have
a  better  performance  than usually  used (and  recommended
by  clinical  guidelines)  scores,  like qSOFA,  NEWS  or  MEWS.

As  we  can see, most  of  ML-based  sepsis  detection  sys-
tems  use  age,  well-known  vital  signs  (i.e.  HR, RR,  Temp,
SBP,  and  DBP)  and  usual  blood  test  results  to  build  their
models.  Other  authors  use  less  common  parameters.  Arvind
et  al.50 showed  us  an interesting  way  of  detecting  sepsis
using  solely  unstructured  narrative  discharge  notes  (Area
Under  Curve  (AUC)  0.82). The  work  of  Tang  et al.49 is  par-
ticular  because  of  their  use  of  electrocardiogram  and finger
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and  ear-lobe  photoplethysmography  signals  to  detect  sep-
sis  (AUC  0.78  for  severe  sepsis).  There  are,  also,  more
experimental  strategies,  such as  the  one  proposed  by  Wang
et  al.,36 who  employed  five  biomarkers  (d-xylose,  Acetatic
acid,  Linoleic  acid, d-glucopyranosiduronic  acid,  and choles-
terol),  reaching  a sensibility  of  0.896  and a specificity  of
0.658.

To  sum  up, ML based model  have  a  good  performance  to
detect  sepsis,  even  with  a few  vital signs obtained  routinely,
and  without  need  for  suspicion  of sepsis,  at ED admission
or  during  hospital  stay.  Specific  data  and  results  of  sepsis
detection  studies  in Table  2.

Is sepsis prediction an  achievable goal?

As  we  have  already  explained,  sepsis  is  a time-dependent
syndrome,  so  we  must  detect  it  as  fast as  we  can.  Would
it  be  possible  even  to  predict  that  an infected  patient  is
going  to have  a sepsis  a  few hours  before  its  appearance
or  that  a  sepsis  is  going  to  deteriorate  into  septic  shock?
There  are  some  approaches  that  expressly  address  this
challenge.

Of the  34  works  covered  in the  present  study,  12  of  them
explicitly  deal  with  the task  of  sepsis  prediction  and  sepsis
severity  prediction.  From  a  quantitative  perspective,  some
studies  were  carried  out using  large  datasets.39,41,50,58

Mao  et  al.42 built  a model  using  only  six  vital  signs able  to
predict  evolution  (4 h before  its appearance)  to  severe  sepsis
(AUC  0.85),  and  to  septic  shock  (AUC  0.96)  in septic  patients
in  ED,  hospital  wards,  and  ICU.  Using  vital  signs  and  combin-
ing  them  with  other  variables  (laboratory  results,  treatment
received,  etc.),  Lin  et al.69 and Liu et  al.70 achieved  a
higher  prediction  capacity,  being able to  predict  evolution
to  severe  sepsis  (AUC  0.94)  or  septic  shock  (AUC  0.82)  before
severe  sepsis  (12 h before)  and  septic  shock  (9 h before)
appearance.

It seems  more  interesting  and  challenging  to  predict-
ing  those  non-septic  patients  admitted  to  hospital  wards
or  ICU  who  will  suffer  from  sepsis.  Some  authors  have
developed  systems  able  to  predict  sepsis  using  just  a  few
variables  that are usually  collected  by  the EHR  (such  as
age,  HR,  RR, BP,  and  SaO2).  Scherpf  et  al.,52 combining  10
variables  (age,  DBP,  SBP,  pH,  SaO2,  Temp,  HR, RR,  partial
pressure  of  carbon  dioxide  (PaCO2),  and white  blood  cell
(WBC))  achieved  an  AUC  of  0.81  to  predict  sepsis  in ICU
patients  3  h  before  its  appearance.  Barton  et al.,45 using
just  six  variables  (SaO2,  HR, SBP,  DBP,  Temp,  and  RR),  were
able  to  predict  sepsis  development  in hospital,  ICU, and  ED
patients,  with  an advance  of  24  h (AUC  0.84)  and 48  hours
(AUC  0.83).

Other  more  complex  approaches,  as  Giannini’s  et  al.,56

combined  up  to  587  variables  to  achieve  an AUC of  0.88
to  predict  sepsis  in hospital  wards  patients  with  one hour
advance.  As  we  can  see, there  are different  systems  that
have  demonstrated  their  ability  to  predict  sepsis  before  its
appearance,  some of  them  based  on  a few variables  usu-
ally  recorded  on  EHR, with  a  good  performance.  Of  course,
accuracy  increases  closer  to  sepsis  onset  and when  the sys-
tem  can  have  more  dates  of  trends  of each  variable.  Specific
data  and  results  of  sepsis  prediction  in Table  3.

Can  ML  techniques be used  to accurately
predict sepsis-related  mortality?

Predicting  sepsis-related  mortality  is  important  in order  to
both  classify  patients  by  their  severity  and identify  those
situations  in which a  more  aggressive  treatment  may  be
necessary.  Moreover,  it could be useful  for  designing  clin-
ical  trials,  aiding  in the selection  of  the  target  population.
A tool  that  makes  mortality  prediction  would  be very  useful
for  the selection  of patients  to  be included  in  these  studies.

Of  the 34 works  covered  in the  present  study,  9 of  them
explicitly  deal  with  the task  of  predicting  sepsis-related
mortality.  There  is  a significant  variability  in  the  size  of
patient  databases,  ranging  from  large  datasets  to a  few
individuals  under consideration.59 In  most  cases,  prediction
studies  were carried  out  using  smaller  datasets  when  com-
pared  with  the  previous  task.59,62

Both  the ability  to  predict  short-term  and long-term  mor-
tality  have  been  analyzed  by  different  authors.

Short-term  mortality  prediction  has  been  studied  by
Perng  et al.60 They  used 53  clinical  variables,  all  of  them
obtained  during  ED patient  stay,  and  achieved  an AUC  of
0.94  to  predict  mortality  at  72  h and of 0.92  at 28  days.
Similar  results  (but  no  better)  showed  Taylor  et  al.63 with  a
more  complex  algorithm  that  combines  more  than  500  varia-
bles  and  achieves  an AUC of 0.86  to  predict  sepsis  related
mortality  at 28  days  in ED  patients.

Garcia-Gallo  et  al.67 developed  a ML-based  model  for  pre-
dicting  1-year  mortality  in critically  ill  patients  diagnosed
with  sepsis,  using  the MIMIC-III  critical  care  database.71

Reported  results  using  a tree-based  ensemble  classifier
outperformed  those  obtained  by  other  traditional  scoring
systems  (e.g.  SAPS  II, SOFA  or  OASIS),  reaching  an AUC of
0.804.  In their  model,  they  include  47  variables  (includ-
ing  vital  signs,  laboratory  results,  comorbidities,  and organ
dysfunction).

Regarding  the variables  used,  most  of  the proposed
models  use  age,  lactate,  WBC  count,  and other  well-known
vital  signs (as RR,  Temp,  and mean  blood  pressure)  all  of
them  easily  accessible  in different  settings.  From  a comple-
mentary  point of  view,  the work  of  Byrne  et  al.59 is  especially
interesting  because  mortality  is  predicted  by  using  939  pep-
tides  identified  with  LC-MS/MS  (Liquid  Chromatography  with
tandem  Mass Spectrometry)  in blood  samples.

To  sum  up,  different  works  have shown  a relatively  good
performance  predicting  long  and  short-term  sepsis  related
mortality,  usually  employing  more  variables  than  in  previous
tasks.  Specific  data  and results  of mortality  prediction  in
Table  4.

Is  it  possible  to effectively increase adherence
to  treatment  guidelines  and reduce
sepsis-related mortality and/or associated
costs using ML  techniques?

Despite  the  fact that  it  is  difficult  to assess  how  sepsis  detec-
tion  (and  especially,  sepsis  prediction)  will  change  sepsis
treatment,  in this work  we  have tried  to  elucidate  if ML
techniques  could  improve,  by  themselves,  sepsis  treatment.
Due  to  the high  mortality  related  to  sepsis,8,10 increasing
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survival  should  be  the  goal  when  designing  an interven-
tion.  However,  sepsis  also  generates  huge  health  resources
consumption,13,14 so  a  parallel  objective  should  be  to  reduce
the  cost  per  episode.  In our  review,  we  found  that  both
objectives  (i.e.  clinical  and economic)  could  be  achieved
through  the  effective  use  of  ML techniques.

The  AI  Clinician,72 a  computational  model  using  rein-
forcement  learning,  developed  from  the analysis  of
treatment  received  by  patients  in the MIMIC-III,  is  able to
dynamically  suggest  optimal  treatments  for  adult  patients
with  sepsis.  The  system  has  been  able  to  identify  opti-
mal  fluid  and  vasopressors  management  from  suboptimal
training  examples.  In  an independent  validation  cohort,
comprising  patients  from  the  eICU  Collaborative  Research
Database,73 those  who  received  the treatment  that  the  AI
Clinician  would  recommend  had the  lowest  mortality  rate.
Authors  suggest  that  this  system  could  be  used  in a real
environment,  proposing  a  course of action  for  the septic
patients  in  real-time.  Although  they  do  not expect  to  replace
the  physician,  as  the selection  of  the treatment  strategy
still would  require  their  clinical  judgement,  they  think  that
the  system  could  provide  additional  insight  about  optimal
decisions  to  increase  the patient  survival  expectative.

There  are,  also,  systems  that are prospectively  tested.
The  impact  of the InSight  system,42 described  above,  was
assessed  in  two  prospective  studies.  McCoy  and Das74

showed  how  after  deploying  InSight  (compared  with  pre-
implantation  period),  in-hospital  mortality  rate  decreased
by  60.24%,  sepsis-related  hospital  length  of  stay  (LOS)
decreased  by  9.55%,  and  sepsis-related  30-day  readmission
rate  decreased  by 50.14%.  The  study  was  carried  out  with
1328  cases  and  showed  how  early  intervention  can reduce
mortality  and  LOS,  thereby  decreasing  the  overall  hospi-
tal  cost.  Furthermore,  Shimabukuro  et  al.75 conducted  a
randomized  clinical  trial  in two  ICUs  with  the  goal  of  cal-
culating  the  average  LOS and  in-hospital  mortality  rate  of
two  groups  of  patients  (i.e. 67 experimental  patients  vs.  75
control  patients).  InSight obtained  a  decrease  of  the average
LOS  of  2.7  days  between  control  and  the  experimental  group
(representing  a  20.6%  reduction).  Additionally,  the mortality
rate  showed  a  decrease  of  58.0%.

Giannini  et  al.56 also  tested  their  system  in a  pre-post
trial,  resulting  just  in an  increase  of  lactate  testing  and
intravenous  fluids  administration  with  a reduction  in time
to  ICU-admission  without  impact  on  mortality  or  ICU  LOS
before  ML  system  was  implanted.

Discussion and  conclusions

In  the  future,  application  of  ML  systems  to  sepsis  diagno-
sis  and  management  could  change  our  way  of  dealing  with
this  pathology.  First  of  all, criteria  for  sepsis  diagnosis  could
change:  until  now,  the  simplicity  of  the definition  was  a  pri-
ority,  since  sepsis  can occur  at any  level  of  care  and  must
be  recognized  by  professionals  not specialized  in this  field.
This  simplification  has led us to  the  point that, nowadays,
sepsis  diagnosis  is based on  the presence  of  established
organic  dysfunction.  A  sepsis  diagnosis  tool  based on  ML
could  analyze  a massive  number  of  variables  not  afford-
able  to  us.  This system,  properly  calibrated,  would  allow
us  to  reach  a  more  precise  diagnosis,  and even  predict  the

appearance  of  sepsis,  completely  changing  the management
of  this entity.  Secondly,  the development  of  clinical  decision
support  systems  (CDSS)  with  complex  algorithms  based  on  AI
may  improve  adherence  to  accepted  management  recom-
mendations,  giving individualized  treatment  advice.  Finally,
employing  Big  Data  and  ML  based  algorithms  could  let  us
know  a precise  outcome  for  each specific  patient.

These  systems,  although  they do not  replace  human  doc-
tors,  offer  a series  of advantages  over  them:  they  would
allow  almost  all  hospitals  around  the  world  to  have  a sep-
sis  expert  present  for  24  h  7 days  a  week,  who  does  not get
tired,  and  who  always  offers  evidence-based  treatment.

However,  ML-based  health  care  is  far  from  ideal.  We  must
also  emphasize  that  there  are  serious  difficulties  for  the
development  of intelligent  systems  for health  care. First  of
all,  not  all ICUs  and hospitals  are using  EHR  today,  some-
thing  that  is  essential  to  apply  a ML based  system.  On  the
other  hand,  as  pointed  out  by  Beam  and  Kohane,76 ML ‘‘is
not  a magic  device  that  can  spin  data  into  gold’’  directly,  as
ML  is  a  natural  extension  of  statistics  to  deal  with  and  take
advantage  of the  huge  amounts  of  data  available  nowadays,
but  a big  human  and  scientific  effort  still  is needed  to  let
a  machine  learn  in each  specific scenario.  In fact,  one  of
the  most  important  elements  for ML,  if not  the  most  impor-
tant, is data.  ML needs  large,  experts-curated  and,  most
importantly,  labelled,  datasets  that  should  be extracted  and
properly  processed.  Even  though  such large datasets  could
be collected,  they  may  be subject  to  biases.77 In this  sense,
the  freely  accessible  to  MIMIC-III  critical  care  database  is
the  most  employed  source  of  data  for  training  sepsis-related
models,  instead  of  private  datasets,  showing  that  it is  not
easy  to  find.  Although  this database  has an undoubted  value
and quality,  it only contains  ICU  patients,  where  data  is
recorded  very  frequently.  In  fact,  many  ML  efforts  go to
where  data  is  available,  most  of  times  forgetting  about  its
real clinical  value.78 As  an  example,  in the case  of  sepsis,  it
is  obviously  useful  to  detect  or  predict  sepsis  earlier in ICU
or  ED, using  routine  variables  that  are  recorded  with  no  need
for ‘‘human’’  sepsis  suspicion.  However,  what  about  doing
this  outside  intensive  vigilance  services?  A system  predicting
this event  earlier  in hospital  wards  could  be  of  breakthrough
value,  but  it would  require  continuous  monitoring  of the
patients  with  real-time  registration  of  the generated  data
into  their  EHR,  which  is  not  feasible.  On the other  hand,
despite  their  high  AUC to  detect  and  even  predict  sepsis,  it
is  very  difficult  to  calibrate  these  systems,  as  increasing  the
specificity  and  sensitivity  of  them is  usually  at the expense  of
each  other.  Therefore,  if it has  a high  sensitivity  it  is  going to
trigger  many  unnecessary  alarms  with  the  resulting  fatigue,
whereas  if it has  a high  specificity,  some  patients  are not
going  to  be  detected.

One  argument  against ML could  be  that  some  of  the  rela-
tionships  stablished  by  these  systems  are not  explainable
from  a  physiopathological  point of  view,79 however,  some
authors  like  Eric  Topol80 defend  that  black  box procedures,
whose  action  mechanism  is  unknown,  are already  accepted
in  medicine  and, therefore,  black  box  ML systems  should  be
also  accepted.  Moreover,  ML  could  provide  us with  a  more
deep  understanding  of sepsis,  opening  up  new  ways  to  deal
with  it.

Another  key aspect  of  ML in health  care  is  the rigorous
evaluation  of  the proposed  models.  New  ML-based  systems

152



Medicina  Intensiva  46  (2022)  140---156

for  health  care  are  proposed  on  a daily  basis,  but  many  of
them  are  retrospective  studies.  Clinical  prospective  studies
are  more  difficult  to  find  and  randomized  controlled  trials
of  AI  systems  are  still  an exception.  These  trials  pose chal-
lenges  for  patient  or  physician-level  randomization,  since
two  different  patient  workflows  should  be  used  for  the  treat-
ment  and  control  groups,  which  can  be  perceived  as  a  risk
and  could  be  not be finally  authorized  by providers.78 In the
case  of  sepsis,  the work  of  Shimabukuro  et al.75 is  virtually
the  unique  case  where  a  clinical  trial  has  been  carried  out.

Other  aspect  to  take  into  account  is  the road  to  the  mar-
ket,  which  is  probably  not going  to  be  easy,  as  for  traditional
drugs.81

Finally,  ethics  plays  a  key-role  in ML for  health  care,
also  in  sepsis.  A well-calibrated  prognosis  predictor  on  such
critical  condition  could  even  raise  dilemmas,  such  as:  is  it
acceptable  not  to initiate  or  withdraw  support  measures  in
patients  with  a probability  of dying  above  a  certain  thresh-
old?  Could  the  results  be  artifacted  by  our  prejudices  when
it  comes  to  treating  real patients?

ML  is  a  very  promising  tool  to  improve  sepsis  detection
and  management,  but  there  is  probably  a  long  way  in front
of  us  and  to go along  it,  we  will  need  to  work  as a team  with
partners  unknown  until now,  like  AI  experts.
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