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Abstract

Objective:  To  establish  a  new  machine  learning-based  method  to  adjust  positive  end-expiratory

pressure  (PEEP)  using  only  already  routinely  measured  data.

Design:  Retrospective  observational  study.

Setting:  Intensive  care  unit  (ICU).

Patients  or  participants:  51811  mechanically  ventilated  patients  in  multiple  ICUs in  the USA

(data from  MIMIC-III  and  eICU  databases).

Interventions:  No  interventions.

Main  variables  of interest:  Success  parameters  of ventilation  (arterial  partial  pressures  of  oxy-

gen and carbon  dioxide  and  respiratory  system  compliance)

Results:  The  multi-tasking  neural  network  model  performed  significantly  best  for  all target  tasks

in the  primary  test  set. The  model  predicts  arterial  partial  pressures  of  oxygen  and  carbon

dioxide and  respiratory  system  compliance  about 45  min  into  the  future  with  mean  absolute

percentage errors  of  about  21.7%,  10.0%  and  15.8%,  respectively.  The  proposed  use  of  the  model

was demonstrated  in  case  scenarios,  where  we  simulated  possible  effects  of  PEEP  adjustments

for individual  cases.

Conclusions:  Our  study  implies  that  machine  learning  approach  to  PEEP  titration  is a  promising

new method  which  comes  with  no extra  cost  once  the infrastructure  is  in place.  Availability

of databases  with  most  recent  ICU  patient  data  is crucial  for  the  refinement  of  prediction

performance.
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Predicción  y simulación  de  los  efectos  de la  configuración  de  la PEEP  con  modelos  de

aprendizaje  automático

Resumen

Objetivo:  Establecer  un  nuevo  método  basado  en  el aprendizaje  automático  para  ajustar  la

presión positiva  al  final  de  la  espiración  (PEEP  según  sus  siglas  en  inglés)  utilizando  únicamente

datos ya  obtenidos  de  forma  rutinaria.

Diseño: Estudio  retrospectivo  de  observación.

Ámbito:  Unidad  de  cuidados  intesivos  (UCI)

Pacientes  o  participantes: 51811  pacientes  ventilados  mecánicamente  en  múltiples  UCIs  de

EE.UU. (tomados  de las  bases  de  datos  MIMIC-III  y  eICU).

Intervenciones:  Sin  intervenciones.

Variables  de  interés  principales: Parametros  de  éxito  de la  ventilación  (presiones  parciales

arteriales  de  oxígeno  y  dióxido  de carbono  y  distensibilidad  del sistema  respiratorio).

Resultados:  El modelo  de  red  neuronal  multitarea  obtuvo  los  mejores  resultados  en  todos  los

objetivos del  conjunto  de  pruebas  primario.  El  modelo  predice  las  presiones  parciales  arte-

riales de  oxígeno  y  dióxido  de carbono  así  como  la  distensibilidad  del  sistema  respiratorio

con aproximadamente  45  minutos  de  anticipación,  mostrando  errores  porcentuales  absolutos

medios de  aproximadamente  21.7%,  10.0%  y  15.8%,  respectivamente.  El uso  propuesto  del mod-

elo se  demostró  en  situaciones  hipotéticas  en  las  que  se  simularon  los  posibles  efectos  de los

ajustes de  PEEP  para  casos  individuales.

Conclusiones:  Nuestro  estudio  implica  que  el enfoque  de aprendizaje  automático  para  el  ajuste

de la  PEEP  es  un método  nuevo  y  prometedor  que  no  supone  ningún  coste  adicional  una  vez  que

se dispone  de  la  infraestructura  necesaria.La  disponibilidad  de bases  de  datos  con  información

de pacientes  de  UCI  más  recientes  es  crucial  para  perfeccionar  el  rendimiento  de  la  predicción.

© 2023  El  Autor(s).  Publicado  por  Elsevier  España, S.L.U. Este  es  un  art́ıculo  Open  Access  bajo

la licencia  CC  BY-NC-ND  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Mechanical  ventilation  is  one  of  the principal  therapeutic
methods  applied  in critically  ill  patients  treated  in  inten-
sive  care  units  (ICU).  Selection  of  ventilator  parameters
is being  performed  countless  times  every  day worldwide.
One  of the most  controversial  settings  is  the positive  end-
expiratory  pressure  (PEEP).  Large  clinical  studies  showed
the  importance  of  PEEP  selection  for patient  mortal-
ity,  although  not in a consistent  way.1---3 The  least  one
can conclude  from  these studies  is  that  setting  an indi-
vidually  adequate  PEEP  is  an important  and difficult
task.

The  aim  of  mechanical  ventilation  is  to  secure  sufficient
respiratory  gas  exchange  while,  at  the  same  time,  causing
as  little  harm  to  the patient  as  possible.  The  importance
of  PEEP  lies  in its  ability  to  counteract  the collapse  of
alveoli  at  the  end  of  expiration,  which occurs  especially  in
various  pathological  conditions.  By  providing  a positive  pres-
sure,  PEEP  helps  to  stabilize  the distal  airways,  maintain
lung  volume,  and improve  oxygenation.  However,  the selec-
tion  of  PEEP  is  not a one-size-fits-all  approach,  as different
patients  may  require  individualized  PEEP  settings  based  on
their  underlying  pathology,  lung  mechanics,  and hemody-
namic  status.  Inadequate  or  excessive  PEEP  levels  can  lead
to  adverse  effects  and  exacerbate  lung  injury.  Insufficient
PEEP  may  result  in atelectasis,  atelectrauma,  that  is  inflam-
mation  caused  by  cyclic alveolar reopening,  and  impaired
oxygenation.  On the other  hand,  excessive  PEEP  can  cause

overdistension  of  alveoli,  hemodynamic  compromise,  and
barotrauma.4

There  is  a range  of established  methods  for PEEP opti-
misation.  PEEP can  be  set  as  a  function  of the required
fraction  of inspired oxygen  (FiO2)5 or  chosen  to  optimise
respiratory  system  compliance  (Crs) following  a PEEP  trial.6

More  sophisticated  methods  make  use  of  additional  medi-
cal  equipment  such  as  an eosophageal  pressure  probe7 or
electrical  impedance  tomography.8,9 While  these  are  very
promising  approaches  which offer  new  insight  into  the  topic,
their  use  is  associated  with  extra  material  cost  and it
requires  additional  effort of  trained  personnel.  Probably  the
most  common  method  to  optimise  PEEP  relies  on  personal
clinical  experience  of  the  attending  medical  personnel  as
well  as  trial  and  error,  which  is  hard  to  evaluate  objectively.
All in all, there  is  no  consensus  about  the  best  approach  to
optimise  PEEP.

In  the last  years,  there  have  been huge  advances  in
machine  learning,  in  particular  concerning  neural  networks.
At  the same  time,  there  is a  trend  to  record  and  save more
and  more  data  in the ICU  setting.  In  combination,  these
facts  lead  to  an increase  of machine  learning-based  clinical
decision  support  systems  in the ICU,  see  Ref.10 for  a recent
review,  or  Ref.11 for  a  review  more  centered on  mechanical
ventilation.  The  task  we  present  here  is  a regression  prob-
lem  with  tabular  data.  Classic  machine  learning  algorithms
like  tree-based  methods  have  traditionally  been,  and still
are,  considered  to be state-of-the-art  for these problems.12

With  respect  to  regression  problems  in the ICU  setting,
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Figure  1 Overview  of  the  workflow  in this  study.  ML:  machine  learning.

some publications  are especially  important:  Similar  to our
study,  Ghazal  et  al. tried  to  predict  oxygen  saturation  in
infants  after  a change  in  ventilator  settings.13 The  authors
ultimately  did  not  reach  satisfactory  accuracy,  supposedly
because  of  insufficient  data.  Relying  on  classical  machine
learning  techniques,  Luo  et  al. predicted  laboratory  results
from  previously  known  other  laboratory  results,14 however,
without  incorporating  other  measurement  data. With  Ven-
tAI,  Peine  et  al.  aimed  to  find  the  best ventilator  settings
(PEEP,  FiO2 and  tidal  volume)  with  reinforcement  learning,15

also  using  the  MIMIC-III  and eICU  databases.  The  reinforce-
ment  learning  approach  is  considerably  more  complex  than
the  supervised  learning  approach  used  in this  work  but  offers
the  possibility  to  consider  the  treatments’  long-term  effects
like  mortality  more  easily.  Very  similarly,  Komorowski  et  al.
tried  to find  the best  treatment  regime  for the  circulatory
system  (catecholamines  versus  intravenous  fluids)  in  sepsis16

with  a  reinforcement  learning  approach.
In this  work,  we  aim  to  establish  a  new  machine  learning-

based  method  to  adjust  PEEP  using  only  already  routinely
measured  data.  The  model  is supposed  to offer  the clini-
cian  predictions  for  the possible  effects  of a  PEEP change  on
important  success  parameters  of  ventilation.

Patients and  methods

Fig.  1  shows  an overview  of  the  workflow  that  we  applied  in
this  study.

Data  sources

This  is a  retrospective  observational  study  which  makes  use
of  two  large  intensive  care databases:

MIMIC-III  database

In  the  field  of intensive  care  databases  for  machine  learn-
ing  there  is  one  database  that  stands  out in  its size,  quality
and  frequency  of use  in machine  learning  publications.  Medi-
cal  Information  Mart  for  Intensive  Care  III (MIMIC-III)  is  an
openly  accessible  database  of over  40000  patients  that  were
treated  in  the  ICU  of  the Beth  Israel  Deaconess  Medical
Center  in  Boston  between  2001  and  2012.17 The  database
includes  demographic  data,  vital  signs,  laboratory  results,
interventions,  medication,  notes  of the medical  personnel,
radiologic  findings  and  mortality  data  of  over 60000  ICU
stays.  We  used this database  as a  training  (90%)  and  test
(10%)  set.

eICU  database

The  eICU  Collaborative  Research  Database  holds  data  asso-
ciated  with  over  200000  patient  stays  recorded  in  numerous
ICUs  in  the United  States  between  2014  and  2015, made
available  by  Philips  Healthcare  in  partnership  with  the MIT
Laboratory  for  Computational  Physiology.18 As far  as  the  con-
tents  are  concerned,  this  database  is  similar  to  the MIMIC-III
database  with  the  advantage  of  being  more  diverse  because
of  its  multiple  origins.  In  this  work  we used this second
database  as  an additional  independent  test  set  the model
never  was  confronted  with  during training.

From  these  databases  we  included  all  mechanically  ven-
tilated  patients  over the age of  16  years.  In  the MIMIC-III
database,  patients  were  included  if  they  had  a running  venti-
lation  event  according  to  mimic-code  ventilation  durations,
which  is  supplied  with  the  database.  In  the  eICU  database,
patients  were  included  if they  had  a documented  PEEP  set-
ting  or  a  documented  set  tidal  volume  setting  within  1  h  of
the  measurement  of  a target  variable.

Data  preprocessing

We started  with  all  time  points  where  the  desired  tar-
get  variable  has  been  measured  (ground  truth).  For  each
of  these  events,  we  collected  the  desired  input  variables
according  to  a  predefined  template  from  the  minutes  and
hours  before  (see  Online  Supplement  Table  1).

The  used  items  have  different  characteristics:  items  can
either  be set  (FiO2,  PEEP,  norepinephrine  rate)  or  measured
(peripheral  oxygen  saturation  (SpO2),  body  temperature,
mean  arterial  pressure);  they  can  be timed (SpO2,  FiO2)
or  constant  over  one  ICU  stay  (age,  height);  they  can  be
continuous  (SpO2, temperature)  or  categorial  (ventilator
mode,  sex).  From  these  items  we  always  took  the  latest
measurement  that  was  available  before  the time  of mea-
surement  of  the target  variable.  In  order  to  include  older
measurements  for some  items,  we  discarded  the  latest  n
minutes  before  selecting  a  measurement  (denoted  as  ‘‘item
name  [n]’’).  This  approach  helped  to  mitigate  the effects of
the  varying  frequency  of  available  measurements  for  some
items.  Whenever  columns  contained  missing  values,  an extra
boolean  column  indicating  the presence/absence  of  values
was  added  and  the  missing  values  were  imputed  as  the
median  (or  as  an extra  category  for  categorial  variables).  We
performed  only  minimal  data  curation:  removal  of  impos-
sible  values  and  conversion  of  units  or  representations  to
be  identical  for  one  variable  in case  they  varied consider-
ably between  but  also  within  one  database(s)  (temperature,
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Figure  2  Preprocessing  scheme  for  one  example  observation

of the  target  variable  arterial  partial  pressure  of  oxygen  (PaO2).

Every  row  represents  one  item  in  the  template,  numbers  in

square  brackets  indicate  the time  t in  minutes  up  to  which

the  variable  was  blinded,  also represented  by  the  shaded  green

blocks  indicating  intervals  that  were  discarded  before  selecting

measurements;  green  circles  indicate  selected  measurements

for every  item.

height,  weight,  fractions  vs. percentages,  ventilator  mode
names).  All  values  were  normalized  to  mean  0  and standard
deviation  1  before being  entered  into  the neural  network
models.

In  this  paper,  we  present  two  similar  setups,  represent-
ing  two  clinical  use  cases.  In the  all  data  setup,  the model
predicts  one  or  more  target  variables  at a certain  point  in
time,  using  all  data  that  is  available  up  to that  time.  This
aims  to  help  clinicians  with  real-time  information  instead  of
them  having  to  wait  for  the results  of  a blood  gas  analysis
or  other  measurement.  Fig.  2 illustrates  how  we  selected
and  preprocessed  measurements  for  the all  data  setup.  The
30  min  blinded  setup  is  identical  to  all  data  except  that
all  measured  variables  (i.e.,  variables  that  are  not  set)  in
the  last  30  min  are  removed.  This  corresponds  to a predic-
tion  30−60  min into  the future.  This  model  is  used in the
simulation  setting  which  is  explained  below.

We  included  every  available  event  (i.e.,  measurement
of  the  target  variables)  either  in the  training  or  test  sets
to  get  the  maximum  amount  of data.  The  training-test-split
of  the  MIMIC-III  dataset  was  performed  on  the patient  level
with  10%  of  the  patients  being  assigned  to  the  test  set.  The
whole  eICU  dataset  was  used as  an additional  independent
test  set.

Model  selection,  training,  and testing

The  neural  network  models  use  a  fully  connected  arti-
ficial  neural  network with  only  1 layer  with  256  nodes
with  a  rectified  linear (ReLU)  activation  function.  Catego-
rial  variables  were  represented  using  embeddings  of sizes
3---7. Settings  for the training  were  as  follows:  Learning
rate  2  · 10−3 with  Adam  optimiser,  20  epochs.  For  regular-
isation  we  used  a weight  decay  of  0.1  and  a dropout  of
0.04  for  the  embeddings  and  0.5 for  the fully  connected
layer.  A  batch  normalization  layer  is  applied  to  contin-
uous  inputs.  Comparable  simple  model  architectures  and
choices  of  hyperparameters  have  proven  effective  in kaggle
machine  learning  competitions  about  similarly  set  problems.
We  did  not  perform  any  hyperparameter  tuning  on  test
data.

We  also  trained  a  random  forest  model  with  the same
data  as a reference  (50  trees,  no  maximum  depth,  loss  func-
tion  MSLE).  Again,  we  did not  perform  any  hyperparameter
tuning  on  test  data.

With  the used target  variables,  we  care  for  relative  rather
than  absolute  errors.  Therefore,  we  opted  for  mean  squared
logarithmic  error  (MSLE)  as  our  loss  function.  We  trained
the  model  for  every  target  variable  individually  as  well  as
together  in  the  sense  of  multi-task  learning.19 In the lat-
ter  case,  the mean  of the individual  loss  functions  for each
task  was  used  as  loss  function.  Implementation  of the  neu-
ral  network  models  was  done  with  pytorch  and  the fast.ai
framework.20

As  metrics  we report  the mean  absolute  error  (MAE)  and
the  mean  absolute  percentage  error  (MAPE) of  predictions
for  all  target  variables  in the test  set.  To  gauge performance
transfer,  we  report  performance  on  the  held-back  MIMIC-III
test  set  along  with  the eICU  test  set.

As a  subgroup  analysis,  we  tested  the  regression  per-
formance  of  the  neural  network  model  on  a subgroup  of
patients.  For  this  analysis,  we  included  only  patients  where
chronic  obstructive  pulmonary  disease  (COPD)  was  docu-
mented  in the diagnosis  list.

To  statistically  compare  model  performances,  we  applied
a  Wilcoxon  signed-rank  test  (as  implemented  in the SciPy
Python  package)  on  the  models’  errors  (MAPE)  of individual
samples.  The  significance  level was  5%.  To  correct  for  mul-
tiple  testing,  we applied  Bonferroni  correction  for  the 12
statistical  comparisons,  resulting  in a Bonferroni  threshold
of  0.42%.

Interpretability

We estimated  the  feature  importance  of  the  input  varia-
bles  with  a permutation  approach21 To  do  this,  the  values
for  all  single  input  variables  were  permuted  across  every
observation  in the batch  in  turn.  The  resulting  difference
in loss  compared  to the unpermuted  data  reflects  the
importance  of  any  single  input  variable.  For  example,  to
estimate  the importance  of  the ‘‘age’’  variable,  its  val-
ues  were shuffled  across  all  events,  leaving  the rest  of  the
dataset  untouched.  The  resulting  decrease  in  prediction
performance  compared  to  the  performance  on  the  origi-
nal dataset  is  an  indicator  for  the importance  of  the ‘‘age’’
variable.

Simulation

Based  on  the 30  min  blinded  setup,  it is  possible  to  make
predictions  about  the expected  effects  of  PEEP  changes  by
presenting  the  model  input  data  where  the latest  set  PEEP
value  has been  manipulated.  As  stated  above,  we  carefully
removed  all measured  variables  for  the  time  frame  in ques-
tion  in order  to  blind  the  model  from  the real effects  of
the  set  PEEP  that  might  have been  altered  by  the manip-
ulation.  For  example,  to  simulate  the  effect  of a  PEEP
increase  of  5  cmH20  30−60  min  into  the future,  we  increase
the  last  set  PEEP  (from  30  to  60  min  in the past)  by  5
cmH2O.
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Table  1  Performance  of  models  for  both  setups.  Significantly  better  (lower)  metrics  highlighted.

MIMIC-III  test  set eICU  test  set

RF NN  RF NN

MAE  MAE  MAE MAE

MAPE  MAPE  p  MAPE  MAPE  p

All  data

PaO2 [mmHg]  26.69

20.79%

26.61

20.64%

.003  42.98

39.29%

45.88

43.21%

<.001

PaCO2 [mmHg]  4.398

10.26%

4.251

9.95%

<.001  6.57

15.46%

6.562

15.17%

<.001

Crs [mL/cmH2O] 4.924

15.94%

4.805

15.73%

<.001  10.05

24.19%

11.37

26.37%

<.001

30 min  blinded

PaO2 [mmHg]  27.62

21.79%

27.32

21.67%

<.001  44.11

40.57%

48.03

46.57%

<.001

PaCO2 [mmHg]  4.453

10.37%

4.285

10.02%

<.001  6.637

15.67%

6.715

15.54%

0.54

Crs [mL/cmH2O] 4.938

16.07%

4.804

15.82%

<.001  10.06

24.29%

10.83

27.37%

<.001

NN: neural network, RF: random forest, PaO2: arterial partial pressure or oxygen, PaCO2: arterial partial pressure of carbon dioxide, Crs:

respiratory system compliance, MAE: mean absolute error, MAPE: mean absolute percentage error.

Results

Primary  results

From  the  MIMIC-III/eICU  dataset,  we  included  a  total  of
205734/133232,  205736/131796  and  207377/168961  indi-
vidual  observations  for  arterial  partial  pressure  of  oxygen
PaO2,  arterial  partial  pressure  of carbon  dioxide  PaCO2

and  Crs,  respectively.  These  observations  originated  from
16189/35622  patients.  They  represent  all available  obser-
vations  for the included  patients;  none  were  excluded.
Information  about  missing  values,  descriptive  statistics  and
correlations  of the input  variables  can  be  found in the Online
Supplements.

We  compared  three  computational  settings:  random  for-
est,  individual  neural  network  models  for all  target  variables
and  one  multi-tasking  neural  network  model  for  all  target
variables.  The  results  from  the individual  neural  network
models  were  consistently  worse  than  those  of  the multi-
tasking  neural  network  (Online  Supplement  Table  2),  thus
they  were  discarded  from  further  analyses  and are not  shown
in  the  main text.  Consequently,  Table  1  presents  the results
obtained  with  the other  two  models:  the random forest  and
the  multi-tasking  neural  network.  Their  performance  was
statistically  compared  using  the MAPE  metric.  In  the  MIMIC-
III  test  set,  the neural  network  model  performed  significantly
better  for  all  tasks  (PaO2,  PaCO2, Crs) and both  settings  (all
data,  30 min  blinded) except  PaO2 in  the  all  data  setting.
The  error  rates  for all  models  and  tasks  were  considerably
higher  when  moving  from  the  MIMIC-III  test  set  to  the eICU
test  set.  Here,  the  random  forest  produced  significantly  bet-
ter  results  for  PaO2 and  Crs for both  settings.  The  neural
network  only  had  significantly  lower  error  rates  than  the
random  forest  when  comparing  PaCO2 in  the all  data  setting.

The  error  rates (MAPE)  of  the  neural  network  in the  all
data  setting  on the MIMIC-III  test  set  were  20.6%  (PaO2),

10.0%  (PaCO2)  and  15.7%  (Crs),  respectively.  On the eICU  test
set  they  were  43.2%  (PaO2), 15.2%  (PaCO2) and  26.4%  (Crs). In
the  30  min  blinded  setting  on  the  MIMIC-III  test set  the  neu-
ral  network  achieved  21.7%  (PaO2),  10.0%  (PaCO2) and  15.8%
(Crs) mean  absolute  percentage  error.  On  the  eICU  test  set
the  error  rates  were  46.6%  (PaO2), 15.5%  (PaCO2) and 27.4%
(Crs).

For  the COPD  subgroup  analysis,  1608/3081  patients  with
57326/26847  events  from  the MIMIC-III/eICU  dataset  met  the
inclusion  criteria.  The  results  in the  all  data  setting  were
19.6%  (PaO2), 10.0%  (PaCO2) and  15.1%  (Crs)  for  in the MIMIC-
III  test  set  and  42.4%  (PaO2),  17.6%  (PaCO2),  27.9%  (Crs)  for
the eICU  test  set.

Interpretability

Using  the  permutation  approach,  we  calculated  feature
importance  information  for  the  neural  network  model  resul-
ting  in  Online  Supplement  Table 3.

Simulation

Fig.  3  shows  simulations  for  a range  of  possible  PEEP  changes
and  their  effect  on  the three  target  variables  for  three  exam-
ple  inputs.  Predictions  for  the three  target  variables  are
displayed  in different  colours  over a  shared  X-axis,  indicat-
ing  the simulated  PEEP.  The  range  of  simulated  PEEP  values
was  arbitrarily  chosen  to  be +/−  5  cmH2O  around  the  actu-
ally  set  PEEP.  The  dotted  vertical  line  in  the center  indicates
the  current  PEEP.  From  there  the expected  effects on  the
target  parameters  can  be observed  by  stepping  to  the  left
(decrease  of PEEP) or  right  (increase  of  PEEP).  Circles  show
measurements  of  the ground  truth  for  comparison.

The  three  presented  example  cases  illustrate  that  the
predictions  and  target  values  are in good accordance
(ground  truth  circles  are  near  their  prediction  lines).  In
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Figure  3  Simulation  results  for  different  PEEP  values.  (a)  Sim-

ulation  for  the  above  example  with  the  values  from  Online

Supplement  Table  1 as the  only  inputs:  improved  oxygenation

is expected  with  increasing  PEEP.  (b  and c)  Same  but  for  dif-

ferent patients:  oxygenation  is  not  expected  to  improve  with

increasing  PEEP.  Please  note  the  altered  scale  for  PaO2 in c.  The

vertical  dotted  lines  indicate  the  last  set PEEP  value.  Circles

denote  the  respective  ground  truth.

example  a  (event/patient  from  Online  Supplement  Table  1)
the  expected  PaO2 increased  considerably  with  increasing
PEEP  while  the expected  Crs and PaCO2 remained  mostly
unchanged.  In  example  b,  increasing  the  PEEP was  not
expected  to  improve  oxygenation.  In  the  third  example  c,
the  predicted  PaO2 forms  an inverted  U-shape,  indicating
that  the  chosen  PEEP  was  near  the  optimum  with  respect  to
oxygenation.  Crs and  PaCO2 were  expected  to  increase  with
higher  PEEP  settings.  Note  that  there  were  no  ground  truth
measurements  for  some  of the target  values  in examples  a
and  c.

Discussion

In  this  work,  we presented  a machine  learning-based  method
to  adjust  PEEP  using  only already  routinely  measured  data.
Using  simulations,  the model  offers  the  clinician  predictions
for  the  possible  effects  of  a PEEP  change  on  success  param-
eters  of ventilation.

Justification  of choices

The  input  variables  used in our  models  were  chosen  with
two  aspects  in mind:  on  the  one side,  we included  those
measurements  that  provide  information  about  the  general
state  of  health  of  the  patient  (mostly  demographics  and
variables  also  used  in the SOFA  score),  on  the other  side,
we  included  common  ventilator  settings  and measurements
as  well  as  measurements  included  in routine  patient  moni-
toring  in the  ICU.  With  these,  we  were in parts  limited  by
what  values  were available  in both  the  MIMIC-III  and  the  eICU
databases.  The  selection  of  input  variables  was  based  solely
on  the expected  medical  importance  of  the  features.

For  our  target  variables  we  chose PaO2 and  PaCO2,  as
these  are the  main  indicators  of  successful  gas  exchange.
Aside  from  the  use  as  target  variables,  the oxygenation
response  to  a  PEEP  change  might also  predict  mortality,22

in this  setting  possibly  even  without  actually  changing  the
PEEP.  We  also  included  Crs as one  of the oldest  indica-
tors  of  ‘‘best  PEEP’’.23 This  parameter  also  helps  to find
ventilator  settings  with  a low driving  pressure  and  possi-
bly  a low  transpulmonary  pressure  which  might  mitigate
ventilator  associated  lung  injury.24 The  time  it  takes  for  dif-
ferent  variables  to  reach steady  states  after  a  PEEP  change
ranges  from  5  to  over  60  min  and  depends  on the  variables
in  question  and  on  the direction  of  the  PEEP  step.25 We
chose  30−60  min  as  our  prediction  horizon  as  a  compromise
between  the quantity  of  expected  changes  and  the  uncer-
tainty  and,  thus,  difficulty  of  the prediction  task.  A longer
prediction  horizon  would  not  offer  more  information  about
the  effect  of  a PEEP  change  because  all  target  values  would
already  have  reached  a  steady  state.  Because  of  the  binning
of  the  variables,  the choice  of  blinding  30  min  is  equivalent
to  a prediction  30−60  min  into  the  future.

With  a random  forest  and fully  connected  neural  net-
works,  we  deliberately  chose  established,  relatively  simple
models.  The  focus  of this work  lies  not on  testing  or
benchmarking  different  architectures,  which  is  why  we  also
refrained  from  employing  complex  data  imputation  tech-
niques,  explicit  feature  selection  methods  and  extensive
hyperparameter  tuning  (for  a  recent detailed  compari-
son  of  algorithms  see  Ref.12).  Instead  we  want  to  present
an  approach  to  a previously  unaddressed  but  practically
relevant  problem,  and  want  to show  that  even  simple,  unop-
timized  models  can  yield  useful  results.

Advantages  of  this  approach

Methods  for clinical  decision  support  become  more  and  more
common.  The  strength  of  this  tool  is  that  it offers  a very
high  degree  of  individualisation  while  at  the same  time
being  relatively  easy  to apply.  Once the digital  infrastruc-
ture is  set  up,  the model  takes  a small  number  of  routine
measurements  and  outputs  results.  No  additional  materials,
measurements,  interventions,  or  maneuvers  are necessary.
This  simplicity  extends  to  the  model  itself,  making  it easily
comprehensible  and  explainable  to  clinical  users  Moreover,
the  model  can  be trained  in  less  than five minutes  using  a
single  consumer  graphics  processing  unit,  allowing  for  reg-
ular  training  or  fine-tuning,  even  in  changing  circumstances
such  as the onset  of  a  pandemic.  Another  advantage  that
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comes  with  the simplicity  of  the approach  is  its  applicabil-
ity  to  similar  problems:  A  new  model  for  a  different  task
can  be  trained  within  minutes  by  only  specifying  the cor-
responding  new  input  and  output  items.  Consequently,  the
wealth  of  information  contained  in vast clinical  databases
can  be harnessed  to address  numerous  previously  overlooked
‘‘smaller’’  problems,  in contrast  to  the extensively  studied
‘‘large’’  problems  such as  sepsis,  mortality,  or  length  of  stay
prediction.

Sometimes  clinical  decision  support  systems  seem  to  take
the  power  out  of  the clinician’s  hand  because  they  learn  to
rely  on  a  proposed  decision.  The  advantage  of  the solution
presented  here  is  that  the clinicians  still  can  and  have  to  bal-
ance  the  expected  effects  on  the  different  target  variables
and  make  their  own  decisions.  We  therefore  refrain  from
offering  concrete  rules  as  to  how  one  should  react  to  certain
model  or  simulation  outputs.

With  mean  absolute  percentage  errors  of  21.7%  (PaO2),
10.0%  (PaCO2)  and  15.8%  (Crs) for  the three  tasks  on  the
MIMIC-III  test  set,  the model appears  to  reach a clini-
cally  useful  performance  level,  especially  for  the  latter
two  parameters.  To  determine  the  caretaker  acceptance
and  the  perceived  and  actual  benefit  for patient  care,  a
clinical  study  would  be  needed.  Overall,  the two  archi-
tectures  we  compared  (random  forest  and neural  network)
performed  quite  similarly.  The  neural  network  seemed  to
have  an  advantage  on  the MIMIC-III  dataset,  whereas  the
random  forest  performed  better  on  most  tasks  on  the eICU
dataset.  There  is  a  considerable  difference  of  the  regres-
sion  performance  between  the MIMIC-III  test  set  and the
independent  eICU  test  set,  especially  with  PaO2.  This  per-
formance  gap  was  probably  caused  by  structural  differences
between  the  databases,  their  collection  and  the  underly-
ing  treatments.  This  comprises  effects  like which items  are
included  at all  or  at which frequency  they  are  available  in
the dataset.  In terms  of  content,  it is  safe to  assume  that
recorded  treatments  from  different  hospitals  followed  dif-
ferent  treatment  policies,  exacerbated  by  the fact  that  the
recorded  treatments  in  the eICU  database  are  considerably
more recent  than  those  in the  MIMIC-III  database.  Significant
quantitative  differences  can  be  observed  when  comparing
the  extracted  datasets  from  the  MIMIC-III  and  eICU  databases
(Online  Supplement  Table  4).  One  notable  distinction,  which
could  potentially  account  for  the  decreased  performance
on  the  eICU  database,  is  the presence  of  missing  values.
Specifically,  the MIMIC-III  dataset  exhibits  a  20%  rate  of miss-
ing  values,  whereas  the eICU  dataset  experiences  a higher
rate  of  30%  missing  values.  Means  and  standard  deviations
also  differ  considerably  between  the datasets,  e.g,  with  the
mean  compliance  being  36%  higher  in  the  eICU  dataset.  We
are  confident  that the real-world  performance  after  fine-
tuning  with  local  data  (of  the  hospital  where  the model
will  be  applied)  will  be  closer  to  the MIMIC-III  test  set  per-
formance.  The  subgroup  analysis  with  patients  with  COPD
shows  that the presence  of  a very  relevant  comorbidity
hardly  affects  the model  performance.

When  comparing  the results  of  the  all  data  and  30  min
blinded  setup,  the differences  in prediction  error  were  sur-
prisingly  small.  Discarding  30  min  of  measurements  did  not
seem  to  increase  the  difficulty  of  the task  to  a  relevant
degree.  This  may  be  in  part  explained  by  the  fact  that  all tar-
get  variables  tend  to  change  slowly,  leaving  the  last  known

value as  a  very  good  guess.  Another  reason  might  be  the  high
variability  of  the measurement  of  the ground  truth,  which
for  PaO2 and  PaCO2 is  subject  to  numerous  preanalytical  and
(allowable)  analytical  errors.26,27

Our  analysis  of  feature  importance  showed  that  high
importance  was  attributed  to  features  that  seem  clinically
reasonable  for  all  target  tasks.  Specifically,  most important
features  naturally  included  the  last  known  measurement  of
the  variable  to  be predicted  and variables  that  are  closely
correlated.  For  PaO2 these  included  FiO2 and SpO2, for  PaCO2

these  were  the  set  tidal  volume  and set  respiratory  rate as
well  as  pH,  and  for  Crs the  set  tidal  volume  and  peak  inspi-
ratory  pressure.  For  all  target  variables,  the currently  set
ventilator  mode occupied  a  top  10  position,  showing  that
the  model  gathers  valuable  information  from  this  categorial
variable’s  embeddings.  The  last  known  set  PEEP  occurred  at
positions  7,  26  and 7, respectively.  Only  the reason  for the
occurrence  of  the  set  respiratory  rate  for PaO2 and  Crs and
inspired  oxygen  fraction  for  PaCO2 are  unclear.  It  is  impor-
tant  to note that the presented  permutation-based  approach
to  determine  feature  importance  should only be seen  as
a  very  rough  peek  under the model’s  hood  as  it  is  igno-
rant  of the complex  interactions  of multiple  input  variables
because  it considers  every variable  independently.28 All  in
all,  these  results  can  be seen  as  a  reason  to  have confidence
in  the  decision  process  of  the proposed  model.  This  kind  of
interpretability  is  of  major  importance  for the  acceptance
of  machine  learning  solutions  by  clinicians  and  the popula-
tion  in  general.  Similar  to  the simulation  approach  used  in
this  work,  it  would also  be possible  to  better  understand
the  model’s  decision  for  a  single  case  by  manipulating  or
obscuring  individual  input  variables.

The  understanding  how  this  machine  learning  based  tool
could  be  used practically  in  clinical  care  can  be derived  from
the  simulation  examples  shown  in Fig.  3.  In  the presented
cases,  one  has an expected  increase  in PaO2 in response
to  an increased  PEEP  while  the  others  do not. This  kind of
graphic  representation  might be  useful  for a  clinician  who
is  trying  to  optimise  oxygenation  or  carbon  dioxide  elimina-
tion,  especially  in the short  term.  To  our  knowledge,  this
simple  simulation  procedure  has  not  been  done  before  in a
mechanical  ventilation  setting.

Limitations

As  already  mentioned  above,  the  model succeeded  to  some
degree  to  transfer  knowledge  from  one  US database  to
another.  It could  be even  more  challenging,  however,  to
transfer  to  the situation  in Europe,  for  example  because
pressure  controlled  ventilation  is  much  more  common  there.
Additionally,  medical  knowledge  has  a short  half-time  for
example  as  patient  demographics  change  or  new  treat-
ment  options  arise.  What has  been  accurate  for  the MIMICIII
dataset  recorded  between  2001  and  2012  may  be inaccu-
rate  today.  This  makes  fine-tuning  on  recent  local  data  even
more  important.  One  big  problem  we  encountered,  as  one
does  in  many  machine  learning  applications,  was  the  qual-
ity  of  the data.  While the  MIMIC-III  database  is  often  praised
for  its  quality,  these  large  databases  still  suffer  from  miss-
ing  and  corrupt  data  or  incomplete  documentation.  This
becomes  especially  evident  when  moving  across  different
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databases.  Finally, due  to  the  chosen  approach  in this  work,
it  is  not  easily  possible  to  include  long-term  clinical  end-
points  like  mortality  into  the  prediction  because  we  used
a  fixed  prediction  horizon.  For these  endpoints  the much
more  complicated  reinforcement  learning  approach  would
be necessary.15,16

Outlook

To  be  able  to  use  the developed  model  in Europe,  we  plan
to  continue  training  the model  on  data  from  local  ICUs.  A
possible  next  step  would  be  to  include  more  ventilator  set-
tings  into  the  simulation  part,  eventually  making  it possible
to  try  out  different  ventilator  modes,  pressures  and timings
without  subjecting  the  patient  to  unnecessary  risks  or  dis-
comfort.  Taking  this  research  a step further,  once  we  have
completed  the clinical  testing  phase,  we envision  the  poten-
tial  for  applying  this  method  in closed-loop  ventilation 29.
This  novel  approach  would  allow  the ventilator  to  adapt
and  respond  to real-time  predictions  of  blood  gas  analysis
results,  moving  away  from  relying  solely  on  pulse  oximetry  as
a  proxy  measure  for  oxygenation.  The  relatively  simple  pro-
cess  and  model  design  we applied  to  a ventilation  problem
here  would  also  be  suited for  a wide  range  of  applications
outside  of ventilation  therapy,  for example  the  prediction  of
drug  concentrations,  regulation  of  coagulation,  fluid  balance
or  circulation.  For  all  these  applications,  clinicians  currently
rely  mostly  on  experience  or  rules  of  thumb  and  would  def-
initely  benefit  from  a reliable  and objective  prediction.

Conclusion

Machine  learning  for  tabular  data  seems  to  be  a useful
approach  for  the clinically  relevant  problem  of  PEEP  titra-
tion  to  individual  patient  needs.  It delivers  reliable  results
and  comes  with  no  extra  cost once  the digital  infrastruc-
ture  is in  place.  There  is  a  large  potential  for  this  tabular
approach  for  numerous  other  applications  in the ICU.
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