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Abstract
Objective:  To  validate  the  unsupervised  cluster  model  (USCM)  developed  during  the  first  pan-
demic wave  in  a  cohort  of critically  ill  patients  from  the  second  and third  pandemic  waves.
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Design:  Observational,  retrospective,  multicentre  study.
Setting: Intensive  Care  Unit  (ICU).
Patients:  Adult  patients  admitted  with  COVID-19  and  respiratory  failure  during  the  second  and
third pandemic  waves.
Interventions:  None.
Main  variables  of interest:  Collected  data  included  demographic  and  clinical  characteristics,
comorbidities,  laboratory  tests  and  ICU  outcomes.  To  validate  our original  USCM,  we  assigned  a
phenotype  to  each  patient  of  the  validation  cohort.  The  performance  of  the  classification  was
determined  by Silhouette  coefficient  (SC)  and  general  linear  modelling.  In  a  post-hoc  analysis
we developed  and  validated  a  USCM  specific  to  the  validation  set.  The  model’s  performance
was  measured  using  accuracy  test  and  area  under  curve  (AUC)  ROC.
Results:  A total  of  2330  patients  (mean  age  63  [53---82]  years,  1643  (70.5%)  male,  median  APACHE
II score  (12  [9---16])  and  SOFA  score  (4  [3---6])  were  included.  The  ICU  mortality  was  27.2%.  The
USCM  classified  patients  into  3 clinical  phenotypes:  A (n =  1206  patients,  51.8%);  B (n  =  618
patients, 26.5%),  and  C (n  =  506  patients,  21.7%).  The  characteristics  of  patients  within  each
phenotype  were  significantly  different  from  the  original  population.  The  SC was  −0.007  and  the
inclusion of  phenotype  classification  in a regression  model  did not  improve  the  model  perfor-
mance (0.79  and 0.78  ROC for  original  and  validation  model).  The  post-hoc  model  performed
better than  the  validation  model  (SC  −0.08).
Conclusion:  Models  developed  using  machine  learning  techniques  during  the  first  pandemic
wave cannot  be  applied  with  adequate  performance  to  patients  admitted  in  subsequent  waves
without prior  validation.
© 2024  Elsevier  España,  S.L.U.  and  SEMICYUC.  All  rights  reserved.
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Aplicabilidad  de  un modelo  no  supervisado  de conglomerados  desarrollado  en
pacientes  COVID-19  de primera  oleada  en  pacientes  críticos  de segunda/tercera
oleada

Resumen
Objetivo:  Validar  el  modelo  de conglomerados  no supervisado  (USCM)  desarrollado  durante  la
primera ola pandémica  en  una  cohorte  de  pacientes  críticos  de la  segunda  y  tercera  ola.
Diseño: Estudio observacional,  retrospectivo  y  multicéntrico.
Entorno:  Unidad  de Cuidados  Intensivos  (UCI).
Pacientes:  Pacientes  adultos  ingresados  con  COVID-19  e  insuficiencia  respiratoria  durante  la
segunda/tercera  ola  pandémica.
Intervenciones:  Ninguna.
Variables  de interés  principals:  Se  recogieron  características  demográficas  y  clínicas,  comor-
bilidades,  laboratorio  y  evolución  en  UCI.  Para  validar  el  USCM  original,  asignamos  un fenotipo
a cada  paciente  de la  cohorte  de validación.  El  rendimiento  se  determinó  mediante  análisis  de
silueta (AS)  y  modelización  lineal  general.  En  un análisis  post-hoc  desarrollamos  y  validamos  un
USCM específico  para  el conjunto  de  validación.  El rendimiento  del modelo  se  midió  mediante
la prueba  de  exactitud  y  el  área  bajo  la  curva  (AUC)  ROC.
Resultados:  Se  incluyeron  2033  pacientes  (edad  media  63  [53----82]  años,  1643  (70,5%)  varones,
APACHE II  (12  [9---16])  y  SOFA  (4  [3---6]).  La  mortalidad  en  UCI  fue  del  27,2%.  El USCM  clasificó  a
los pacientes  en  3 fenotipos  clínicos:  A  (n  =  1206  pacientes,  51.8%);  B (n =  618  pacientes,  26.5%),
and C  (n =  506 pacientes,  21.7%).  Las  características  de  los  pacientes  dentro  de cada  fenotipo
fueron significativamente  diferentes  de la  población  original.  El AS  fue −0.007  y  la  inclusión  de
la clasificación  por  fenotipos  en  un  modelo  de regresión  no mejoró  el  rendimiento  del modelo
(ROC  0.79  y  0.78  para  el modelo  original  y  de  validación).  El modelo  post-hoc  obtuvo  mejores
resultados  que  el  modelo  de  validación  (AS  −0.08).
Conclusiones:  Los  modelos  desarrollados  durante  la  primera  oleada  pandémica  no pueden  apli-
carse con  un rendimiento  adecuado  a  los  pacientes  ingresados  en  oleadas  posteriores  sin  una
validación  previa.
© 2024  Elsevier  España, S.L.U.  y  SEMICYUC.  Todos  los  derechos  reservados.
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Introduction

Phenotypes  have  been  described  as  a  way  to  characterize
patients  heterogeneous  in different  diseases.1---11 Patients
with  sepsis  are  amongst  those  patients  with  a  very  vari-
able  presentation  including  comorbid  conditions,  age,  and
inflammatory  response.1---3 More  recently,  this  approach  has
been  also  introduced  and tested  in COVID-19  patients.4---13

COVID-19  is  a single  pathogen  disease  with  some spe-
cific  organ  failure  damage  mainly  restricted  to the lungs.
Due  to the different  array  of  clinical  presentation  from
asymptomatic  disease  to  severe  acute  respiratory  distress
syndrome,  many  research  groups, including  large  number  of
patients  aimed  to  phenotype  and  subgroup  patients  in  order
to  better  characterize  clinical  trajectories  and  response  to
treatment.4---13

During  the first  wave,  patients  with  COVID-19  repre-
sented  a  huge  challenge  for  healthcare  systems  due  to
the  high  demand  of  invasive  mechanical  ventilation  and
refractory  hypoxemia.  Our  group,13 and  others,4---12 found
mainly  three  phenotypes  based  on  the mortality  rates find-
ing  some  particular  clinical  characteristics  associated  with
a  guarded  prognosis.  We  hypothesised  that  clinical  phe-
notypes  are  not  static  models  and clinical  characteristics
previously  published  will  not  avail  to  be  implemented  in
other  clinical  settings  and when  patients  are  not  within
the  same  time  frames.14,15 Based  on  these  considerations,
the  aim  of  the  study  is  to  assess  the reproducibility  of
the  application  of  an  unsupervised  cluster  model  devel-
oped  during  the  first  pandemic  wave,  in a cohort  of
critically  ill patients  from  the  second  and  third  pandemic
waves.

Material  and  methods

Study  design

This  study  is  a pre-planned  secondary  analysis  derived  from
a  multi-centre,  prospective,  observational  study  consist-
ing  of  a  large-scale  data  source of  critically  ill patients
to  determine  the reproducibility  of  the  application  of  a
machine  learning  model developed  during  the first COVID-
19  pandemic  wave  to  identify  clinical  phenotypes,  when
applied  to a  cohort  of 2330  critically  ill  patients  from  the
second  and  third  pandemic  waves  (1 July  2020  to  31  July
2021).  The study was  retrospectively  registered  at Clinical-
Trials.gov  (NCT  04948242)  on  the 30th of  June  2021.  The
variables  are  shown  in e-Table  1  (Supplementary  material).
The  need  of informed  consent  was  waived  by  the  Insti-
tution’s  Internal  Review  Board  (Comitè  Ètic  d’Investigació
amb  Medicaments  [CEIm]  from  Institut  d’Investigació  San-
itària  Pere  Virgili  [IISPV]  ----  IRB#  CEIM/066/2020).  Local
researchers-maintained  contact  with  a study  team  member,
and  participating  hospitals  obtained  local  ethics  commit-
tee  approval.  The  study  was  carried out  according  to
the  principles  of  the Declaration  of  Helsinki  and the
Clinical  Trials  Directive  2001/20/EC  of  the European  Par-
liament  relating  to  the  Good  Clinical  Practice  guidelines.
Information  on  anonymisation,  data  collection  and valida-
tion  are  described  in the  Supplementary  material  (Page
1).

We  reported  results  in  accordance  with  the  Strengthen-
ing  the  Reporting  of  Observational  Studies in  Epidemiology
(STROBE)  guidelines.16

Patients

Consecutive  patients  older  than  16  years  of  age  were eligible
for  participation  if admitted  to  one of  the  74  participating
ICUs  (72  from  Spain,  1 from  Ireland  and 1  from  Andorra)  with
acute  respiratory  failure  and  a  COVID-19  diagnosis  was  con-
firmed  by  a  positive  reverse  transcriptase-polymerase  chain
reaction  for  SARS-CoV-2  from  upper  or  lower  respiratory
tract  samples.17 The  follow-up  of  patients  was  scheduled
until  October  31, 2021,  which  confirmed  ICU  discharge  or
death  whichever  occurred  first.

Outcomes
The  primary  outcome  included  all-causes  of  ICU  mortality.
Patients  who  were  discharged  alive from  ICU  were  evaluated
in the  data  as  alive considering  mortality  was  defined  as  any
in-ICU  death.  All  complications  and  outcomes  were  followed
during  ICU  admission.

Data preparation  of the  validation  cohort

We  first  assessed  the value  distributions  and  missingness  of
the  25  candidate  clinical  variables.  For  data  quality  control,
continuous  variables  with  missing  data  >20%  were  excluded
of  database.  Missing  data  for continuous  variables  were
imputed  using  R-package  ‘‘missForest’’  for the statistical
software  R/CRAN.  The  imputation  was  applied  to  impute
the  missing  values  of D  dimer  (15%),  ferritin  (15%),  D-lactate
dehydrogenase  (10%),  procalcitonin  (10%),  creatinine  (10%),
SOFA  score  (10%),  APACHE  II  score  (9%)  and  C-reactive  pro-
tein  (CRP)  (5%).  Categorical  data  (including  ICU  mortality)
were  available  for  all  patients.  The  study  definitions  used  in
the  present  analysis  are shown  in the Additional  file  (Page  2).
The  distribution  of  patients  for  each  variable  in  the general
population  and each phenotype  differentiating  the  original
cohort  from the validation  cohort  are shown  in the  Addi-
tional  file (e-Figs.  1---8).

Statistical  analysis

No  statistical  sample  size  calculation  was  performed  a  pri-
ori,  and sample  size  was  equal  to  the  number  of  patients
admitted  to  the participant’s  ICUs  with  confirmed  COVID-19
during  the study  period.  To  describe  baseline  characteris-
tics,  the  continuous  variables  were  expressed  as  median
(Q1---Q3  range])  and  categorical  variables  as  number  of  cases
(percentage).  For  patient  demographics  and clinical  char-
acteristics,  differences  between  groups  were assessed  using
the  chi-squared  test  and Fisher’s  exact  test  for  categori-
cal  variables,  and  the Mann---Whitney  U  or  Wilcoxon  test  for
continuous  variables.

Original  phenotype  derivation
We  originally  derived  phenotypes  using  the development
cohort.13 More  specifically,  an  unsupervised  clustering  anal-
ysis  was  applied  in a  cohort  population  of 2022  critically  ill
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Table  1  Patient  characteristics  of  the  original  and  validation  cohort  and  within  each  phenotype  obtained  by  applying  the  original  model  in  the  validation  population.

Variablea Overall  Phenotype  C
(life-threatening
disease)

Phenotype  B (critical  disease)  Phenotype  A  (severe  disease)

Original
cohort
(n  =  2017)

Validation
cohort
(n  =  2330)

Original
cohort
(n  =  857)

Validation
cohort
(n  = 506)

Original
cohort
(n  =  623)

Validation
cohort
(n  = 618)

Original
cohort
(n  =  537)

Validation
cohort
(n  =  1206)

General  characteristics
and  severity  of  illness

Age,  mean  (Q1---Q3),  years  64
(55−71)

63
(53−92)**

66
(58−72)

66
(59−73)

63
(53−71)

62
(53−70)

63
(53−70)

62
(52−70)

Male, n  (%)  1419
(70.3)

1643
(70.5)

626
(73.0)

377
(74.5)

416
(66.8)

428
(69.3)

377
(70.2)

838
(69.5)

APACHE  II, mean  (Q1---Q3)b 13
(10−17)

12
(9−16)***

17
(14−22)

15
(11−19)***

13
(10−16)

12
(9−16)*

12
(9−16)

11
(8−15)*

SOFA,  mean  (Q1---Q3)c 5  (3.7)  4.0
(3−6)***

7  (6−8)  6 (4---8)**  5 (3−7)  4  (3−6)*  4 (3−5) 3 (2−4)*

Laboratory  findings
D-lactate  dehydrogenase,
mean  (Q1---Q3),  U/L

537
(417−707)

463.0
(358−584)**

670
(554−929)

525
(401−632)*

477
(378−570)

466
(349−595)

474
(372−564)

432
(347−548)

White  blood  cell,  mean
(Q1---Q3),  ×109

8.8
(6.2−12.2)

9.3
(6.7−12.9)*

10
(6.9−13.6)

10
(7.1−14.4)

8.5
(6−11.7)

9.8
(7−13.3)*

7.7
(5.8−10.2)

8.9
(6.4−12)*

Serum  creatinine,  mean
(Q1---Q3),  mg/dL

0.88
(0.7−1.1)

0.80
(0.6−1.0)

0.99
(0.76−1.36)

0.93
(0.71−1.27)

0.80
(0.66−1.00)

0.77
(0.64−0.95)

0.80
(0.66−1.01)

0.79
(0.65−0.97)

C-reactive  protein,  mean
(Q1---Q3),  mg/mL

15.5
(9.1−24.3)

11.3
(6.3−17.9)**

18
(10−26)

13
(7−20)***

14
(9−22)

11
(6.4−17)**

14
(8−20)

11
(6−17)**

Procalcitonin,  mean
(Q1---Q3),  ng/mL

0.3
(0.1---2.0)

0.19
(0.09---1.17)**

0.5
(0.2−1.3)

0.25
(0.11,
0.80)*

0.2
(0.1−0.5)

0.17
(0.08−0.48)

0.2
(0.1−0.6)

0.18
(0.08−0.4)

Serum  lactate,  mean
(Q1---Q3),  mmol/L

1.5
(1.1−2.0)

1.4
(1.1−1.7)*

1.6
(1.2−2.2)

1.5
(1.1−1.9)*

1.4
(1.0−1.9)

1.4
(1.1−1.9)

1.5
(1.1−1.9)

1.4
(1.0−1.8)

D  dimer,  mean  (Q1---Q3),
ng/mL

1593
(720−3790)

995
(589−2115)
***

2260
(1009−4894)

1300
(685−3932)***

1319
(634−3548)

1059
(629−2648)*

1090
(580−2100)

861
(522−1641)**

Ferritin,  mean  (Q1---Q3),
ng/mL

1600
(1290−2240)

1381
(947−1807)***

1800
(1416−2377)

1487
(949−1962)**

1554
(1271−1936)

1370
(963−1839)*

1538
(1280−1899)

1345
(937−1709)*

Coexisting  condition  and  comorbidities
Arterial  hypertension,  n  (%)  932

(46.2)
1123
(48.2)***

548
(63.9)

421
(83.2)***

173
(27.8)

169
(27.3)

211
(39.3)

533
(44.2)
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Table  1  (Continued)

Variablea Overall  Phenotype  C
(life-threatening
disease)

Phenotype  B (critical  disease)  Phenotype  A  (severe  disease)

Original
cohort
(n  =  2017)

Validation
cohort
(n  =  2330)

Original
cohort
(n  =  857)

Validation
cohort
(n  = 506)

Original
cohort
(n  =  623)

Validation
cohort
(n  = 618)

Original
cohort
(n  =  537)

Validation
cohort
(n  =  1206)

Obesity  (BMI  > 30),  n  (%)d 653
(32.3)

942
(40.4)***

294
(34.3)

214
(42.3)***

200
(32.1)

224
(36.2)

159
(29.6)

504
(41.8)***

Diabetes,  n  (%)  418
(20.7)

599
(25.7)***

198
(23.1)

188
(37.2)***

108
(17.3)

122
(19.7)

112
(20.9)

289
(24.0)

Coronary  arterial  disease,  n
(%)

124  (6.1)  152  (6.5)  48  (5.6)  54
(10.7)**

41 (6.6)  29  (4.7)  35  (6.5)  69  (5.7)

COPD, n  (%)  148  (7.3)  180  (7.7)  73  (8.5)  65
(12.8)*

38 (6.1)  39  (6.3)  37  (6.9)  76  (6.3)

Chronic renal  disease,  n (%)e 85  (4.2)  153
(6.6)***

44  (5.1)  60
(11.9)***

10 (1.6)  27  (4.4)  31  (5.8)  66  (5.5)

Hematologic disease,  n  (%)  72  (3.5)  66  (2.8)  30  (3.5)  21  (4.2)  22  (3.5)  16  (2.6)  20  (3.7)  29  (2.4)
Asthma, n  (%)  120  (5.9)  156

(6.7)*
34  (4.0)  32  (6.3)  45  (7.2)  45  (7.3)  41  (7.6)  79  (6.6)

HIV, n  (%)  5  (0.2)  9  (0.4)  2 (0.2)  3 (0.6)  1 (0.2)  2  (0.3)  2 (0.4)  4 (0.3)
Pregnancy, n  (%)  4  (0.2)  12  (0.5)  0 (0.0)  1 (0.2)  3 (0.5)  2  (0.3)  1 (0.2)  9 (0.7)
Autoimmune disease,  n (%)f 74  (3.6)  53  (2.3)  36  (4.2)  13  (2.6)  18  (2.9)  19  (3.1)  20  (3.7)  21  (1.7)
Chronic heart  disease,  n (%)g 57  (2.8)  82  (3.5)  26  (3.0)  32

(6.3)***
10 (1.6)  14  (2.3)  21  (3.9)  36  (3.0)

Neuromuscular disease,  n  (%)  16  (0.8)  12  (0.5)  8 (0.9)  4 (0.8)  5 (0.8)  2  (0.3)  3 (0.6)  6 (0.5)
Oxygenation  and  ventilator  support

High  flow  nasal  cannula,  n
(%)

376
(18.6)

915
(39.3)***

27  (3.2)  26  (4.9)  3 (0.5)  2  (0.3)  345
(64.2)

887
(73.6)***

Non-invasive  ventilation,  n
(%)

141  (6.9)  187
(8.0)**

50  (5.8)  32  (6.3)  26  (4.2)  66
(10.7)***

65  (11.9)  89  (7.4)**
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Variablea Overall  Phenotype  C
(life-threatening
disease)

Phenotype  B (critical  disease)  Phenotype  A  (severe  disease)

Original
cohort
(n  =  2017)

Validation
cohort
(n  =  2330)

Original
cohort
(n  =  857)

Validation
cohort
(n  = 506)

Original
cohort
(n  =  623)

Validation
cohort
(n  = 618)

Original
cohort
(n  =  537)

Validation
cohort
(n  =  1206)

Invasive  mechanical
ventilation,  n  (%)

1173
(58.1)

679
(33.4)***

694
(81.0)

364
(71.9)***

475
(76.2)

312
(50.5)***

3  (0.6)  3 (0.2)

PaO2/FiO2, mean  (Q1---Q3)  132
(96−163)

124
(99−145)**

126
(88−155)

125
(97−151)

165
(144−212)

127
(106−150)**

111
(82−133)

122
(97−141)*

Complications
Shock, n  (%)h 904

(44.8)
474
(20.3)***

652
(76.1)

309
(61.1)***

196
(31.5)

84
(13.6)***

56  (10.4)  81
(6.7)***

Acute kidney  dysfunction,  n
(%)i

579
(28.7)

512
(22.0)**

350
(40.8)

181
(35.8)

118
(18.9)

113
(18.3)

111
(20.7)

218
(18.1)

Myocardial  dysfunction,  n
(%)j

169  (8.3)  177  (7.6)  96  (11.2)  56  (11.1)  43  (6.9)  41  (6.6)  30  (5.6)  80  (6.6)

ICU crude  mortality,  n  (%)  657
(32.6)

634
(27.2)

389
(45.4)

200
(39.5)*

159
(25.5)

182
(29.4)

109
(20.3)

252
(20.9)

All comparison between overall and clusters. *p < 0.05; **p < 0.01; ***p < 0.001, others comparison p > 0.01.
Abbreviations: IQR, interquartile range; APACHE II, Acute Physiology and Chronic Health Evaluation II; SOFA, Sequential Organ Failure Assessment; BMI, body mass index; COPD, chronic
obstructive pulmonary disease; HIV, human immunodeficiency viruses; PaO2/FiO2,  partial pressure arterial oxygen/fraction of  inspired oxygen.

a Corresponds to minimum or maximum value, as appropriate, within 12 h  of  ICU admission. The variables in this Table were no transformed for your comparison.
b APACHE II score to the severity of illness, the score is obtained by adding the following components 1) 12 clinical and laboratory variables each with a score range of 0---4 points (APS).

The APS is  determined from the worst physiologic values during the initial 24 h  after ICU admission, 2) age with a range 0---6 points and 3) chronic health points if the patients has history
of severe organ system insufficiency or is  immunocompromised assign 5 points if the patients is no operative or emergency postoperative and 2 points for elective postoperative patients
with a total score range of  0---71.

c SOFA score corresponds to the severity of  organ dysfunction, reflecting six organ systems each with a score range of  0---4 points (cardiovascular, hepatic, hematologic, respiratory,
neurological, renal), with a  total score range of 0---24.

d Defined as a body mass index (calculated as weight in kilograms divided by height in meters squared) of  30  or greater.
e Baseline eGFR <60 on at  least two consecutive values at least 12 weeks apart prior or hemodialysis.
f Included acute leukemia, myelodysplastic syndrome and lymphomas.
g According to the New York Heart Association (NYHA) functional classification III and IV.
h Defined as patients in whom adequate fluid resuscitation therapy are unable to restore hemodynamic stability and need any dose of  vasopressor drugs.
i Define as an  abrupt and sustained (more than 24 h)  decrease in kidney function and categorized according to RIFLE criteria.
j Define as an  acute decrease in ejection fraction (EF) with dilatation of ventricles observed in echocardiography upon ICU admission.
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Figure  1  Outline  of  the  study  analysis  plan.

patients  admitted  to ICU  during  the  first  pandemic  wave,  and
three  different  clinical  phenotypes  were  derived:  (1)  Cluster
A  phenotype  (severe  disease);  (2)  Cluster  B phenotype  (crit-
ical  disease)  and  (3)  Cluster  C  phenotype  (life-threatening
disease).  The  characteristics  of  each  phenotype  are  shown  in
Table  1 and more  detailed  information  on  the  development
of  phenotypes  is  available  in  the original  publication.13 An
overview  of the primary  analysis  plan  is  outlined  in  Fig.  1.

Phenotype  external  validation
To  evaluate  the  reproducibility,  we validated  our  original
phenotypes  like  the primary  analysis.  We assigned  a phe-
notype  to  each  patient  of the validation  cohort  using  the
medoids  obtained  with  the development  cohort.  The  analy-
sis  was  carried  out using the  same  number  of  clusters  (n  = 3),
the  same  number  of  variables  (n = 25)  and  the same  discreti-
sation  of  variables  used  in the  development  of  the original
model.13 We  then  characterised  the new  population  assigned
to  each  phenotype  by  assessing  their  differences  in demo-
graphics,  clinical  and  laboratory  variables,  comorbidities,
and  mortality  from  the original  phenotypes.

Performance  evaluation  of  phenotype  classification
The performance  of  the  classification  was  determined  by:

a)  Silhouette  analysis:  the  silhouette  analysis  measures
how  well  an observation  is  clustered,  and  it estimates
the  average  distance  between  clusters.  The  Silhouette
coefficient  (Si)  measures  how  similar  an object  ‘‘i’’ is
to  the  other  objects  in  its  own  cluster  versus  those  in
the  neighbour  cluster.  Si  values  range  from  1  to  −1: a
value  of  Si close  to  1  indicates  that  the  object  is  well
clustered.  A value  of  Si  close  to  −1 indicates  that  the

object  is  poorly  clustered,  and that  assignment  to  some
other  cluster  would  probably  improve  the overall  results.
Finally,  the silhouette  plot displays  a measure  of how
close  each  point  in  one  cluster  is to  points  in the neigh-
boring  clusters.

b)  General  linear  model  (GLM):  in addition,  for  the  aims
of  confirming  phenotypes  performance,  we  developed
a  supervised  predictive  model (GLM)  with  validation
dataset.  GLM  (original)  was  performed  to  investigate  the
association  between  baseline  (on  ICU  admission)  varia-
bles  and  ICU-mortality.  The  GLM  model  comprised  factors
of clinical  interest  and  all  significant  covariates  (p  < 0.05)
in the  univariate  analysis  of  ICU  mortality,  and  we  studied
presence  of collinearity  between  explanatory  variables
with  the  use  of variance  inflation  factors  (VIF).  A VIF
value  greater  than  5 was  considered  as  potentially  severe
correlation  between  predictor  variables  and the variable
was  excluded  of  model.

The  results  are presented  as  odds  ratios  (OR) and 95%
confidence  intervals  (CI).

To  assess  whether  the new classification  of patients  by
phenotype  improved  the  performance  of  the  original  GLM
model,  a new  GLM  model  was  run again,  now including  the
phenotype  variable  (modified  model),  and  finally  the  model
was  applied  to  patients  within  each  phenotype  (model  A,  B
and  C).

For  all  model  internal  validation,  database  was  randomly
split  into  two  subsets:  (a)  a ‘‘training  set’’  (70%),  and  (b) a
‘‘validation  set’’ (30%).  Models’  performance  was  examined
using  accuracy  test,  sensitivity(S),  specificity  (Sp),  positive
predictive  value  (PPV),  negative  predictive  value  (NPV)  and
area  under ROC  curve  (AUC).  The  AUC  ROC  of  the models
was  compared  using the  package  roc.test  (R sfotware).  This
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function  compares  two  correlated  (or  matched)  or  uncorre-
lated  (unmatched)  ROC  curves.  The  Delong  method  was  used
which  tests  whether  there  is  a difference  in the (partial)  AUC
of  the  ROC  curves.

A  post-hoc  analysis
We  performed  an unsupervised  cluster  model  specific  to the
second  and  third wave  patients  (2/3  wave  model)  in  order
to  evaluate  whether  a model  specifically  designed  to  obtain
new  medoids  classifies  patients  better  than  the validation
model.  The  performance  of the  2/3 wave  model  classifica-
tion  was  assessed  by  silhouette  analysis.

Data analysis  was  performed  using  R software  (cran.r-
project.org).

Results

Study  populations

The  original  population  includes  2017  patients  admitted  to
ICUs  during  the  first  pandemic  wave  as  noted  in the orig-
inal  publication.13 The  validation  population  includes  2330
patients  admitted  to  ICUs  during the  second  and  third pan-
demic  waves  and  is  the focus  of the present  study.

Characteristics  of patients  in  the  validation  group
on admission  to the  ICU

From  July  1,  2020,  to  July 31,  2021,  a  total  of 2330  criti-
cally  ill  patients  from  74  ICUs  were  enrolled  in the  present
analysis.  The  median  age was  63  (53---82)  years,  and 1643
(70.5%)  were  men.  A total  of 1630  (70.0%)  patients  had
at  least  one  coexisting  comorbidity.  Arterial  hypertension
(n  =  1123;  48.2%)  and  obesity  (n  =  942;  40.4%)  were  the  most
frequently  comorbid  conditions  reported.  The  severity  of
illness  was  intermediate  according  to  the  APACHE  II (12
[9---16])  and  SOFA  (4 [3---6])  scores.  PaO2/FiO2 ratio  on  the
day  of ICU  admission  was  124.8  (99---145)  and  915  (39.3%)
patients  required  high  flow  nasal  cannula  (HFNC).  Only  26.5%
(n  =  618)  of  patients  required  mechanical  ventilation  on  ICU
admission.  The  ICU  crude  mortality  was  27.2%  (n  = 634). As
expected,  patients  who  died  were  more  severe,  had  a higher
frequency  of comorbidities  and  complications  than  those
who  survived.  The  clinical  characteristics  of  the  patients  and
laboratory  results  are shown  in  Table  2.

Comparing  the validation  population  with  the original
cohort  population10 (Table  1),  the  validation  population
showed  lower  age,  lower  severity  (APACHE)  and organ  dys-
function  (SOFA)  level,  lower  inflammatory  status,  and  less
development  of complications  such as  shock  and  acute
kidney  injury  (AKI).  In  contrast,  the  presence  of hyperten-
sion,  obesity,  diabetes,  chronic  renal  failure,  and  asthma
were  more  frequent  in the  validation  population.  Ventila-
tory  support  was  different  between  the  2 populations,  with  a
decrease  in  the use  of invasive  mechanical  ventilation  (IMV)
and  an  increase  in the use  of  high-flow  nasal  cannulas  (HFNC)
and  non-invasive  ventilation  (NIV)  upon  admission  to  the  ICU
in  the  validation  population.  Despite  these  characteristics,
crude  mortality  in ICU  was  lower  in the validation  cohort

but  this  difference  did not  achieve  statistical  significance
(Table  1).

Application  of unsupervised  cluster  analysis  in
validation  population

The  25  variables  considered  as  predictors  in  the develop-
ment  of  the  original  model10 were  included  in  the new
validation  model,  considering  the same  discretisation  with
respect  to  the original  model.  The  variables  categorized  as
independently  associated  with  ICU  mortality  are  shown  in
Table 2.

The  application  of  unsupervised  cluster  analysis  allowed
the  classification  of  patients  in  the validation  population
into  3  clinical  phenotypes.  Phenotype  A  (severe  disease)
included  1206  patients  (51.8%),  phenotype  B  (critical  dis-
ease)  included  618  patients  (26.5%),  while  phenotype
C  (life-threatening  disease)  included  the remaining  506
patients  (21.7%).  ICU  mortality  increased  significantly  from
phenotype  A (20.9%),  B (29.4%)  to  C  (39.5%,  p  <  0.001  for  all
comparisons).

The  3 clinical  phenotypes  in  the validation  cohort  in a
lower  dimensional  space  are shown  in additional  file  (e-Fig.
9).  The  size  and  characteristics  of the validation  and  orig-
inal  phenotypes  in the 3-class  model  are shown  in  Table  1.
The  number  of  patients  included  in  the  validation  phenotype
A  represented  a significantly  higher  percentage  of  total  of
patients  (59%)  compared  to  the original  phenotype  A which
only  included  26.6%  of the  population  (p <  0.001).  Validation
phenotype  A patients  were  less  severe,  with  lower  levels
of  inflammation,  less  development  of  shock  and  similar  fre-
quency  of  comorbidities  (except  for  obesity)  compared  to
the  original  phenotype  A  patients  (Table  1,  Fig.  2,  e-Figs.  3
and  4).  Despite  these  differences,  the crude  ICU  mortality  of
the  validation  phenotype  A  (20.9%)  was  not different  from
that  of  the original  phenotype  A  (20.3%,  p  =  0.77).

Patients  classified  within  validation  phenotype  B  repre-
sented  a lower  percentage  of total  of  validation  population
(26.5%) compared  to  the original  phenotype  B (30.8,
p  <  0.001).  Validation  phenotype  B patients  were  less  severe,
with  lower  levels  of  inflammation,  less  development  of shock
and  similar  frequency  of  comorbidities  compared  to  the  orig-
inal  phenotype  B patients  (Table  1,  Fig.  2,  e-Figs.  5  and
6).  Despite  these characteristics,  no differences  in crude
ICU  mortality  were  observed  between  the  two  phenotypes
(25.5%  vs  29.4%,  p =  0.17  for phenotype  B original  and vali-
dation  respectively).  Finally,  patients  included  in validation
phenotype  C  represented  a lower  percentage  of  total  of  val-
idation  population  (21.7%) respect  of  original  phenotype  C
(42.5%,  p  <  0.001).  Validation  phenotype  C  patients  were  less
severe,  with  lower  levels  of  inflammation  and  less  develop-
ment  of  shock  upon  ICU  admission.  In  contrast,  the  presence
of  hypertension,  obesity,  diabetes,  chronic  renal  failure,
coronary  disease,  chronic  obstructive  pulmonary  disease,
and  asthma  were  more  frequent  in  the  validation  C  phe-
notype  (Table  1, Fig.  2,  e-Figs.  7 and  8).  The  ICU  crude
mortality  was  lower  in validation  C  phenotype  (39.5%)  than
original  C  phenotype  (45.5%,  p  <  0.01).

The  determination  of  the  Si  coefficient  (silhouette  anal-
ysis)  allowed  us to  observe  a mean  value  for  the  overall
population  of  −0.007,  with  mean  values  of  0.4853490,
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Table  2  Characteristics  of  2330  COVID-19  critically  ill  patients  in the  validation  group  included  in  the  study.  The  data  are shown
with the  discretisation  of  the  variables  used  to  carry  out  the  study.

Variablea Overall  Survival  Non  survival  p-Value

General  characteristics  and  severity  of  illness
No. of  patients  (%)  2330  (100.0)  1696  (728)  634  (27.2)  ---
Age, median  (Q1---Q3),  years  63  (63−92) 61  (51−69) 69  (61−75)  <0.001
Discretization,  No.  (%)

16---56  681 (29.2)  587  (34.6)  94  (14.8)  <0.001
57---66 761 (32.7)  583  (34.4)  178  (28.1)
67---71 269 (11.5)  175  (10.3)  94  (14.8)
>71 619 (26.6) 351  (20.7) 268  (42.3)

Male, No.  (%) 1643  (70.5) 1179  (69.5) 464  (73.2) 0.093
APACHE II,  median  (Q1---Q3)b 12  (9−16) 11  (8---15) 14  (11---18) <0.001
Discretization,  No.  (%)

1---12  1039  (44.6)  869  (51.2)  170  (26.8)  <0.001
13---14.6  525 (22.5)  370  (21.8)  155  (24.4)
14.7---16 140 (6.0)  94  (5.5)  46  (7.3)
>16 626 (26.9)  363  (21.4)  263  (41.5)

SOFA, median  (Q1---Q3)c 4.0  (3−6)  4  (3−5)  5  (4−7)  <0.001
Discretization,  No.  (%)

0---3.9  975 (41.8)  822  (48.5)  153  (24.1)  <0.001
4---7 910 (39.1)  625  (36.9)  285  (45.0)
7.1---8 311 (13.3)  186  (11.0)  125  (19.7)
>8 134 (5.8)  63  (3.7)  71  (11.2)

Shock at  ICU  admission,  n  (%)  474 (20.3)  293  (17.3)  181  (28.5)  <0.001
Quadrant infiltrates  in chest  X-ray,  median  (Q1---Q3)  3 (2---4)  3  (2---4)  4  (2---4)  <0.001
Discretization,  No.  (%)

1  quadrant  119 (5.1)  95  (5.6)  24  (3.8) 0.019
2 quadrants  573 (24.6)  433  (25.5)  140  (22.1)
3 quadrants  541 (23.2)  404  (23.8)  137  (21.6)
4 quadrants  1089  (46.7)  758  (44.7)  331  (52.2)

PaO2/FiO2 at  ICU  admission,  median  (Q1---Q3) 124.8  (99---145)  128  (106---141)  110  (83---136)  <0.001
Discretization,  No.  (%)

0---158 1913  (82.1)  1369  (80.7)  544  (85.8)  0.005
>158 417 (17.9) 327  (19.3)  90  (14.2)

Laboratory findings
D-lactate  dehydrogenase,  median  (Q1---Q3),  U/L 463.0  (358---584) 437  (343---555)  523  (402---660)  <0.001
Discretization,  No.  (%)

0---467 1188  (51.0) 953  (56.2) 235  (37.1) <0.001
>467 1142  (49.0)  743  (43.8)  399  (62.9)

White blood  cell, median  (Q1---Q3),  ×109 9.3  (6.7−12.9)  9.2  (6.6−12.5)  10.0  (7.0−14.6)  <0.001
Discretization,  No.  (%)

0−13.6  1815  (77.9)  1371  (80.8)  444  (70.0)  <0.001
>13.6 515 (22.1)  325  (19.2)  190  (30.0)

Serum creatinine,  median  (Q1---Q3),  mg/dL  0.80  (0.6−1.0)  0.78  (0.6−0.9)  0.90  (0.7−1.2)  <0.001
Discretization,  No.  (%)

0---0.9  1493  (64.1)  1172  (69.1)  321  (50.6)  <0.001
0.91---1.13  405 (17.4)  286  (16.9)  119  (18.8)
>1.13 432 (18.5)  238  (14.0)  470  (74.1)

C-reactive protein,  median  (Q1---Q3),  mg/mL  11.3  (6.3−17.9)  10.9  (5.9−17.3)  12.9  (6.9−20.2)  <0.001
Discretization,  No.  (%)

0---20  1853  (79.5)  1383  (81.5)  470  (74.1)  <0.001
>20 477 (20.5)  313  (18.5)  164  (25.9)

Procalcitonin, median  (Q1---Q3),  ng/mL  0.19  (0.09−1.17)  0.17  (0.08−0.43)  0.25  (0.11−0.82)  <0.001
Discretization,  No.  (%)

0---0.17  1112  (47.7)  874  (51.5)  238  (37.5)  <0.001
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Table  2  (Continued)

Variablea Overall  Survival  Non  survival  p-Value

0.18---0.74  790  (33.9)  570  (33.6)  220  (34.7)
>0.74 428  (18.4)  252  (14.9)  176  (27.8)

Serum lactate,  median  (Q1---Q3),  mmol/L  1.4  (1.1---1.7)  1.3  (1.0---1.8)  1.6  (1.2---2.0)  <0.001
Discretization,  No.  (%)

0---2.13 1981  (85.0) 1469  (86.6) 512  (80.8) 0.001
>2.13 349  (15.0) 227  (13.4) 122  (19.2)

D dimer,  median  (Q1---Q3),  ng/mL 995  (589−2115) 900  (540---1750) 1340  (730---4167) <0.001
Discretization,  No.  (%)

0---3000  1875  (80.5)  1432  (84.4)  443  (69.9)  <0.001
>3000 455  (19.5)  264  (70.0)  191  (30.1)

Ferritin ng/mL,  median  (Q1---Q3)  1381  (947−1807)  1300  (905−1700)  1590  (1088−1940)  <0.001
Discretization,  No.  (%)

0---1610  1523  (65.4)  1187  (70.0)  336  (53.0)  <0.001
1611---1740 162  (7.0)  104  (6.1)  58  (9.1)
1741---1810 72  (3.1)  40  (2.4)  32  (5.0)
>1810 573  (24.6)  365  (21.5)  208  (32.8)

Coexisting condition  and  comorbidities
Arterial  hypotension,  No.  (%)  1123  (48.2)  741  (43.7)  382  (60.3)  <0.001
Obesity, No.  (%)d 942  (40.4)  683  (40.3)  259  (40.9)  0.83
Diabetes, No.  (%)  599  (25.7)  391  (23.1)  208  (32.8)  <0.001
Coronary arterial  disease,  No.  (%)  152  (6.5)  83  (4.9)  69  (10.9)  <0.001
COPD, No.  (%)  180  (7.7)  110  (6.5)  70  (11.0)  <0.001
Chronic renal  disease,  No.(%)e 153  (6.6)  85  (5.0)  68  (10.7)  <0.001
Hematologic disease,  No.  (%)f 66  (2.8)  32  (1.9)  34  (5.2)  <0.001
Asthma, No.  (%)  156  (6.7)  114  (6.7)  42  (6.6)  1.00
HIV, No.  (%)  9  (0.4)  6  (0.4)  3  (0.5)  0.96
Pregnancy,  No.  (%)  12  (0.5)  12  (0.7)  0  0.07
Autoimmune  disease,  No.  (%)  53  (2.3)  35  (2.1)  18  (2.8)  0.33
Chronic heart  disease,  No.  (%)g 82  (3.5)  38  (2.2)  44  (6.9)  <0.001
Neuromuscular  disease,  No.  (%)  12  (0.5)  11  (0.6)  1  (0.2)  0.25
Ventilator support
Oxygen  mask,  No.  (%)  610  (26.2)  450  (26.5)  160  (25.2)  0.52
High flow  nasal  cannula,  No.  (%) 915  (39.3)  720  (42.5)  195  (30.8)  <0.001
Non-invasive  ventilation,  No.  (%) 187  (8.0) 129  (7.6)  58  (9.1)  0.25
Invasive mechanical  ventilation,  No.  (%) 618  (26.5) 353  (20.8) 265  (41.8)  <0.001
Complications  and  outcome
Acute  kidney  dysfunction,  No.  (%)h 512  (22.0) 236  (13.9) 276  (43.5)  <0.001
Bacterial community-acquired  co-infection,  No.  (%)  207  (8.9)  121  (7.1)  86  (13.6)  <0.001
Ventilator associated  pneumonia,  No.  (%) 666  (28.6)  409  (24.1)  257  (40.5)  <0.001
Myocardial dysfunction,  No.  (%)  177  (7.6)  67  (4.0)  110  (17.4)  <0.001
ICU crude  mortality,  No.  (%) 634  (27.2)  NA  NA  ---

Abbreviations:  Q1---Q3: 1st quartile---3rd quartile; APACHE II, Acute Physiology and Chronic Health Evaluation II; SOFA, Sequential
Organ Failure Assessment; BMI, body mass index; COPD, Chronic obstructive pulmonary disease; HIV, human immunodeficiency viruses;
PaO2/FiO2, partial pressure arterial oxygen/fraction of inspired oxygen.

a Corresponds to minimum or maximum value, as appropriate, within 12 h  of  ICU admission. The variables in this Table were no
transformed for your comparison.

b APACHE II score to the  severity of  illness, the score is obtained by adding the following components 1) 12 clinical and laboratory
variables each with a score range of 0---4 points (APS). The APS is determined from the worst physiologic values during the initial 24 h
after ICU admission, 2) age with a range 0---6 points and 3) chronic health points if the patients have history of  severe organ system
insufficiency or is immunocompromised assign 5 points if the patients is  no operative or emergency postoperative and 2  points for elective
postoperative patients with a total score range of  0---71.

c SOFA score corresponds to the severity of organ dysfunction, reflecting six organ systems each with a score range of 0---4 points
(cardiovascular, hepatic, hematologic, respiratory, neurological, renal), with a total score range of 0---24.

d Defined as a body mass index (calculated as weight in kilograms divided by height in meters squared) of  30 or greater.
e Baseline eGFR<60 on at least two consecutive values at least 12 weeks apart prior or haemodialysis.
f Included acute leukaemia, myelodysplastic syndrome and lymphomas.
g According to the New York Heart Association (NYHA) Functional Classification III and IV.
h Define as an abrupt and sustained (more than 24 h) decrease in kidney function and categorized according to RIFLE criteria.
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Figure  2  Characteristics  of  patients  in original  (pink  area)  vs.  validation  (green  area)  cohort  in A,  B  and C  phenotype.  (Data
reported in  median  (a)  or  in  percentage  (b).  (HFNC:  high  flow  nasal  cannula,  AKI:  acute  kidney  injury,  SOFA:  Sequential  Organ
Failure Assessment,  APACHE  II: Acute  Physiology  and  Chronic  Health  Evaluation,  HTA:  arterial  hypertension;  DD:  D  dimer,  PCR:
reactive C-protein;  NIV:  non-invasive  ventilation,  IMV:  invasive  mechanical  ventilation;  LDH:  lactic  dehydrogenase;  WBC:  white
blood cells).

−0.4575937  and −0.4109113  for  phenotypes  A,  B and  C
respectively  (Additional  information  in e-Tables  2  and  3 and
e-Fig.  10).  The  graphical  representation  suggests  that  the
classification  performed  is  not adequate,  since  it has cor-
rectly  classified  only  cluster  A,  but  has  misclassified  100%
of  the  patients  in clusters  B  and  C.  On the other  hand,  the
graphical  representation  of  the Si  applied  to  the ‘‘Original’’
cohort  (e-Fig.  10), although  not  optimal,  shows  that  in each
cluster  there  is  a  percentage  of  patients  adequately  classi-
fied.

Supervised  predictive  model  validation

a)  Original  GLM  model

To  further  assess  the  robustness  and  usefulness  of  the
new  phenotypes  developed,  a  GLM model  was  carried  out.
The  25 clinical  and laboratory  variables  used for  the  clus-
tering  analysis  were used  as  predictors  in  the  original GLM
(Additional  file  e-Tables  4 and 5).  AKI  (OR  = 2.5  [1.9---4.4]),
myocardial  dysfunction  (OR  = 2.2 [1.4---3.3]),  IMV  (OR  =  1.9
[1.4---2.6]),  GAP---ICU  (OR  =  1.08  [1---03---1.12]),  age  (OR  = 1.03
[1.02---1.05],  RCP  (OR = 1.02  [1.01---1.04]  and  PaO2/FiO2

(OR = 0.99  [0.99---1.0])  were  variables  associated  with  ICU
mortality  (Additional  file e-Fig.  11). No  collinearity  was
observed  (Additional  file  e-Table  6)  and the performance  of
the  model  are shown  in Table  3 and  Additional  file  (e-Table
7  and  e-Fig.  12).

b) Modified  GLM  model  with  the  inclusion  of  the  phenotype
classification.

When  the phenotype  variable  was  included  in the  model
(modified  GLM),  it was  observed  that  phenotype  type  was
not  associated  with  mortality,  while  the variables  indepen-
dently  associated  with  mortality  were  the same  as  in the
original  GLM  model  (Additional  file  e-Table  8  and  e-Fig.  13).
No  collinearity  was  observed  (Additional  file  e-Table  9) and
the  performance  of  the  model  are  shown  in Table 3  and
Additional  file  (e-Table  10  and  e-Fig. 14).

c)  GLM  model  in the  A phenotype  population

The  characteristics  of  the patients  classified  within  phe-
notype  A according  to  the  evolution  in ICU  can be  seen
in  additional  file (e-Table  11).  When  the  GLM  model  was
applied  in  this population  (Additional  file e-Table  12), it  was
observed  that  myocardial  dysfunction  (OR  = 3.6  [1.8---7.2]),
AKI  (OR  = 2.9 [1.8---4---6],  age  (OR  = 1.03  [1.02---1.05])  and
SOFA  score  (OR = 1.01  [1---1.01])  were  variables  associated
with  ICU  mortality  (Additional  file  e-Fig.  15).  The  perfor-
mance  of  the  model  is  shown  in Table  3  and  Additional  file
(e-Table  13  and  e-Fig.  16).

d)  GLM model  in the  B phenotype  population

The  characteristics  of  the patients  classified  within  phe-
notype  B according  to the  evolution  in ICU  can be  seen
in  the  additional  file (e-Table  14).  When  the GLM  model
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Table  3  Models  (GLM)  performance  comparison.

Point  estimates  Original  GLM  Modified  GLM  Phenotype  A  GLM  Phenotype  B  GLM  Phenotype  C  GLM

Accuracy  0.79  (0.76−0.82)  0.78  (0.75−0.81)  0.80  (0.78−0.82)  0.73  (0.70−0.75)  0.66  (0.63−0.69)
AUC ROC  0.79  (0.75−0.83)*  0.78  (0.75−0.82)*  0.77  (0.71−0.83)  0.67  (0.58−0.76)  0.76  (0.68−0.84)
S 0.81  (0.78−0.84)  0.81  (0.77−0.84)  0.84  (0.80−0.88)  0.77  (0.69−0.83)  0.72  (0.61−0.81)
Sp 0.66  (0.57−0.74)  0.65  (0.56−0.74)  0.55  (0.39−0.70)  0.57  (0.39−0.74)  0.60  (0.46−0.72)
PPV 0.92  (0.89−0.94)  0.92  (0.89−0.94)  0.93  (0.90−0.96)  0.89  (0.82−0.94)  0.73  (0.63−0.82)
NPV 0.43  (0.36−0.50)  0.42  (0.34−0.49)  0.32  (0.22−0.44)  0.36  (0.23−0.50)  0.58  (0.44−0.70)

AUC: area under curve, S: sensitivity, Sp: specificity, PPV: positive predictive value, NPV: negative predictive value.
* p  = 0.89 for AUC between original and validation model using roc.test function.

was applied  in this population  (Additional  file  e-Table  15),
it  was  observed  that  presence  of  more  than  3  quadrants
infiltrates  in  chest  X-ray  (OR  =  6.5  [1.1---37.7]),  myocardial
dysfunction  (OR = 2.6  [1.05---6.8]),  AKI  (OR = 2.0  [1.08---3.8],
arterial hypertension  (OR = 1.9  [1.04---3.7]), age  (OR  =  1.04
[1.02---1.07])  and PCT  (OR  =  1.01  [1---1.01])  were  variables
associated  with  ICU  mortality  (Additional  file e-Fig.  17). The
performance  of  the model  is  shown  in Table  3 and  Additional
file  (e-Table  16  and e-Fig.  18).

e)  GLM  model  in the C  phenotype  population

The  characteristics  of  the patients  classified  within
phenotype  C  according  to  the  evolution  in ICU  can  be
seen  in  the  additional  file  (e-Table  17). When  the  GLM
model  was  applied  in this population  (Additional  file  e-
Table  18),  it was  observed  that  AKI  (OR  =  4.4  [2.4---8.2],
IMV  (OR  =  2.0  [1.06---3.9]),  Angiotensin  Converting  Enzyme
Inhibitors  (ACEI)  (OR  =  1.9  [1.03---3.7]),  GAP---ICU  (OR = 1.1
[1.08---1.2]),  age  (OR  =  1.05  [1.02---1.08])  and APACHE  II
(OR  =  1.03  [1.01---1.05])  were  variables  associated  with  ICU
mortality  (Additional  file  e-Fig.  19).  The  performance  of the
model  is  shown  in Table 3  and Additional  file  (e-Table  19  and
e-Fig.  20).

Post-hoc  analysis

A  detailed  explanation  of how  to obtain  the  2/3  wave  clus-
ter  model  can  be  found  in  the  Supplementary  material  (Page
26).  Although  the appropriate  number  of  clusters  (3 clus-
ters)  is  the  same  (e-Fig.  21),  the  classification  of patients
in  each  of  the clusters  was  different  (e-Fig.  22).  Pheno-
types  A---C  of  the  2/3-wave  model  included  685 (29.4%),
1074  (46.1%)  and  571 (24.5%)  patients  respectively  instead
of  the  1206  (59.3%),  618  (30.4%)  and  506  (24.3%)  patients
(24.3%)  classified  in phenotypes  A,  B and C  by  the valida-
tion  model.  Although  ICU  mortality  increased  significantly
from  phenotype  A (19.9%),  B  (19.1%)  to  C  (51.3%,  p < 0.001
for  all  comparisons),  this was  similar  to  that observed  for
validation  phenotype  A (20.9,  p =  0.58),  but  lower  than  that
observed  for  validation  phenotype  B  (29.4%,  p  <  0.001)  and
higher  than  that  observed  for validation  phenotype  C  (39.5%,
p  <  0.001).  The  main  characteristics  of  each  phenotype  of
the  2/3  wave  model  are shown  in the  e-Table  22.  Finally,
the graphical  representation  of  the silohuette  coefficient
showed  that  the  classification  was  not  adequate,  but  unlike
what  was  observed  for the validation  model,  the wave  2/3

model  adequately  classified  a  percentage  of patients  in each
phenotype  (e-Fig.  23).

Discussion

Our  main  finding  was  that  the application  of  an unsupervised
clustering  model  developed  during  the first  pandemic  wave
of  COVID-19  to  a set  of  patients  belonging  to  the second  and
third  waves  did not  perform  an adequate  classification  of
patients  within  3  original  phenotypes.  This  is  because  the
‘‘Si’’  silhouette  coefficients  were  close  to  or  below  zero
and  the characteristics  of  the  new  patients  within  each
phenotype  were  significantly  different  from  the  original  phe-
notypes.  This  strongly  suggests  the need to update models
when  new  populations  need to be considered.

Several  authors  have  published  the development  of  dif-
ferent  immune  and clinical  phenotypes  in patients  with
COVID-19  with  a methodology  similar  to  our  study.4---12 Many
of  these  studies  have  not  validated  the results5---9,11 and  some
of  them4,10 have performed  an external  validation  but  with
several  limitations.  Gutiérrez-Gutiérrez  B et  al.4 in an ele-
gant  study,  which  included  4035  consecutive  adult  patients
admitted  to  127  hospitals  in Spain  with  COVID-19  (Febru-
ary  2---March  17,  2020)  deploying  3 clinical  phenotypes  and
performed  external  validation  in a cohort  of  2226  consec-
utive  adult  patients  admitted  from  February  25  and  April
19,  2020.  Although  the performance  of  the classification
of  validation  patients  within  each phenotype  was  adequate
(AUC  ROC  >  0.80),  validation  is  performed  in the  same  period
corresponding  to  the first  pandemic  wave.  The  clinical  char-
acteristics  of  patients  with  COVID-19  and  their  evolution  may
vary  over  time,  as  observed  in  our  study, either by  the  con-
sequences  of  the  change  in  management  of the  intensive
care unit  or  by  the variants  of  SARS-CoV-2  could  affect  the
patient’s  presentation,  clinical  course,  and phenotypes  of
the  patient.  Therefore,  these  phenotypes  should be  vali-
dated  again  with  populations  of  other  pandemic  waves.

To  the  best  of our  knowledge,  only  one  study  has  val-
idated  phenotypes  in 2 different  waves.  Wang  et  al.10

deploying  6 phenotypes  in more  than  20,000  patients  with
COVID-19  (not  all  hospitalised)  during a period  prior  to
August  28,  2020  (training  sample  ----  first  wave) while  valida-
tion  was  performed  on  patients  collected  between  August
29  and  October  31,  2020  (test  sample  ----  second  wave).
Although  the  authors  conclude  that  the phenotypic  latent
class  analysis  (LCA)  model  was  a better  predictor  of  hospi-
talisation  and progression  to  ICU  admission  or  mortality  than
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a  risk  assessment  based  solely  on  age and  comorbidities,  the
concordance  index  in  the test sample  was  as  low as  0.56
and  did  not  exceed  0.77  in any  comparison.  Suggesting,  as
observed  in  our study,  that  the non-inclusion  of  second  wave
patients  in  the original  model  results  in inadequate  model
performance.

Patients  affected  by  COVID-19,  have  great  heterogeneity
in  their  clinical  presentation  and  high  pathophysiologi-
cal  complexity.  A thorough  understanding  of the complex
biological  systems  present  in  these  patients,  requires
conceptual  and  analytical  strategies  that  respect  this  com-
plexity.  The  identification  of different  clinical  phenotypes
emerges  as a  valid  strategy  that  could  provide  guidance
to  personalise  treatment  and  achieve  the  best  outcomes.18

Unfortunately,  machine  learning  methodologies  for produc-
ing  personalised  diagnostics  and  therapeutics  are still  largely
fragile,  unexplainable,  and  often  insufficiently  validates.

As  we  observed  in  our  study,  the application  of  an unsu-
pervised  clustering  model  allows  the  classification  of  new
patients  into  3  different  clinical  phenotypes  with  different
characteristics  and  evolution  among  them.  The  character-
istics  of  the  patients  in each  validation  phenotype  differ
significantly  from  the phenotypes  corresponding  to  the orig-
inal  classification.  In addition,  the  characteristics  of  the
patients  in  each validation  cluster  also  differed  from  the
cluster  model  specifically  developed  for  the second  and third
waves  in  the  post-hoc  analysis.

The  time  frame  of the  study  and  restricted  access  to
confounding  factors  involved  in disease  severity  and  clinical
presentation  need to  be  considered.  In  addition,  morbid-
ity  and  mortality  could  vary  over time,  either  because  of
different  treatments  administered  in  the ICU,  the  strain  cir-
culating  in  a specific  geographical  area  or  the  change  in the
recommended  drug treatment  for the disease.  Finally,  other
recently  described  variants  of SARS-CoV-26 could  affect  the
presentation,  clinical  course,  and  phenotypes  of patients.
All  these  confounding  factors,  or  as  many  as  possible,  should
be  included  in the model  if errors  in risk  classification  of
patients  are  to  be avoided.

Even  if  artificial  intelligence  and machine  learning  are
claimed  to  achieve  indisputable  results,  they  depend  on
the  algorithms  being  defined  accordingly  and  considering
all  confounding  factors.  It  must  be  recognised  that  a  small
change  in  the characteristics  of  the test  cases  can  have  a
considerable  impact  on  the results  of  the  model.  As  proposed
by  Feng  et  al.,19 machine  learning  (ML)  and  artificial  intelli-
gence  (AI)  algorithms  have  the  potential  to  gain  insights  from
clinical  data  and improve  patient  outcomes.  However,  these
highly  complex  systems  are sensitive  to  changes  in the envi-
ronment  and  can  lose performance.  Even  after  successful
integration  into  clinical  practice,  ML/AI  algorithms  need  to
be  continuously  monitored  and  updated  to  ensure their  long-
term  safety  and  effectiveness.  Our  results  warn  of  the need
for continuous  validation  of  linear  and non-linear  models,
as  well  as  of  the expiration  of  these  models  in the  face of
significant  changes  in the  characteristics  of the population.

In  this  context,  many  of  the  risk  factors20---22 and  treat-
ment  measures23,24 that  clinicians  are currently  considering
and  administering  to patients  with  COVID-19  were  deter-
mined  using  patients  from  the  first  pandemic  wave,  without
further  validation.  The  importance  of  these  variables  may
not  be  the  same  for patients  from  other  pandemic  waves,

but,  strikingly,  the need  to  validate  these  important  findings
in  new  COVID-19  patient  populations  has not  been  raised.

Our study  has several  limitations  that  must  be recog-
nized.  First,  in the  current  study,  we  focus  only  on  the data
available  on  ICU  admission,  so we  cannot  exclude  that  a
patient’s  clinical  profile  may  change  over time.  However,
our  objective  was  to  define  the phenotypes  at admission
to  the  ICU  because  it  is  an opportune  window  to  decide
on  eligibility  for  treatment.  Second,  we  have  only  consid-
ered  ICU  patients  and  predominantly  within  a single  country.
Therefore,  considering  all  the confounding  variables  that
may  vary  between  centres  or  regions,  our  results  cannot  be
transferred  without  prior  validation.

Thirdly,  we  cannot  explain  the  differences  observed
between  patients  classified  within  each  phenotype  in  the
validation  group  because  this  classification  is  done  by  the
model  and in an unsupervised  manner.  However,  the clas-
sification  is  better  when  a specific  model  is  developed  for
new  patients,  and  this is in favour  of  an inadequate  classi-
fication  when  applying  the original  model  in the  validation
population.

Fourth,  we  have  only  assessed  mortality  of  phenotypes
at  ICU discharge,  so these  results  cannot  be transferred  to
in-hospital  mortality.  However,  our  aim  was  to  evaluate  phe-
notypes  and  their  mortality  in ICU.

Fifth,  the  observed  clinical  phenotypes  could  reflect
different  profiles  of  virus-host  interactions,  because  of a  dif-
ferent  infectious  viral  load,  a  variable  humoral  and  cellular
immune  response  against  SARS-CoV-2,  or  cellular  receptor
characteristics  and  expression,  together  with  the  genetic
background  of  the host  that  have  not  been  considered  in our
database.  Although information  on  underlying  immunologi-
cal  or  virological  mechanisms  may  be of  great  interest  for
phenotype  development,5 at the  time  of  patient  admission
to  the ICU,  these data  are  not  available,  therefore,  rapid
determination  of  clinical  phenotypes  retains  its  value  and
can  help  decide  on treatment  eligibility  in clinical  practice.

Conclusion

Our results  suggest  that  classification  or  risk  models  devel-
oped  using machine  learning  techniques  during  the  first
pandemic  wave  cannot  be  applied  with  adequate  perfor-
mance  to  patients  admitted  in  subsequent  waves.  Our  study
alerts  researchers  to  the  need  to  validate  the results  and
continuously  update the  models  to  ensure  adequate  perfor-
mance.
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