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Abstract

Objective:  To  develop  a  sepsis  death  classification  model  based  on machine  learning  techniques

for patients  admitted  to  the  Intensive  Care  Unit  (ICU).

Design:  Cross-sectional  descriptive  study.

Setting:  The  Intensive  Care  Units  (ICUs)  of  three  Hospitals  from  Murcia  (Spain)  and  patients

from the  MIMIC  III  open-access  database.

Patients:  180  patients  diagnosed  with  sepsis  in the ICUs  of  three  hospitals  and  a  total  of 4559

patients from  the  MIMIC  III  database.

Main  variables  of interest:  Age,  weight,  heart  rate,  respiratory  rate,  temperature,  lactate  lev-

els, partial  oxygen  saturation,  systolic  and  diastolic  blood  pressure,  pH,  urine,  and  potassium

levels.

Results:  A random  forest  classification  model  was  calculated  using  the local  and  MIMIC  III

databases.  The  sensitivity  of  the  model  of  our database,  considering  all  the  variables  clas-

sified as  important  by  the  random  forest,  was  95.45%,  the  specificity  was  100%,  the  accuracy

was 96.77%,  and an  AUC  of  95%.  .  In  the  case  of  the model  based  on  the  MIMIC  III database,  the

sensitivity  was  97.55%,  the  specificity  was  100%,  and  the  precision  was  98.28%,  with  an AUC  of

97.3%.

Conclusions:  According  to  random  forest  classification  in  both  databases,  lactate  levels,  urine

output and  variables  related  to  acid.base  equilibrium  were  the  most  important  variable  in

mortality due  to  sepsis  in the  ICU.  The  potassium  levels  were  more  critical  in the  MIMIC  III

database than  the  local  database.
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Predicción  de la  mortalidad  por  sepsis  con  técnicas  de aprendizaje  automático

Resumen

Objetivo:  Desarrollar  un  modelo  de clasificación  basado  en  técnicas  de machine-learning  de

muerte por  sepsis  para  pacientes  ingresados  en  la  Unidad  de  Cuidados  Intensivos  (UCI).

Diseño: Estudio  descriptivo  transversal.

Ämbito:  Unidades  de Cuidados  Intensivos  (UCI)  de tres  hospitales  de  Murcia  (España)  y  pacientes

con sepsis-3  de  la  base  de datos  de  acceso  abierto  MIMIC  III.

Pacientes:  180  pacientes  diagnosticados  de  sepsis  en  las  UCI  de tres  hospitales  y  un  total  de

4559 pacientes  con  la  base  de  datos  MIMIC  III.

Variables  de  interés  principales:  Se  evaluaron  la  edad,  el peso,  la  frecuencia  cardiaca,  la  fre-

cuencia  respiratoria,  la  temperatura,  los  niveles  de  lactato,  la  saturación  parcial  de  oxígeno,

la presión  arterial  sistólica  y  diastólica,  el  pH,  los  niveles  de orina  y  los  niveles  de potasio.

Resultados: Se  calcularon  un  modelo  de  clasificación  de  bosque  aleatorio  con  la  base  de  datos

local y  la  base  de  datos  MIMIC  III.  La  sensibilidad  del modelo  de nuestra  base  de  datos  teniendo  en

cuenta todas  las  variables  catalogadas  como  importantes  por el  random  forest  fue del  95,45%%,

la especificidad  del  100%  y  la  exactitud  del  96,77%  y  un  AUC  del  95%.  En  el caso  del modelo

sobre la  base  de  datos  MIMIC  III  la  sensibilidad  fue del 97,55%,  la  especificidad  del  100%  y  la

exactitud del 98,28%  con  un  AUC  del  97,3%.

Conclusiones:  Según  la  clasificación  de  bosque  aleatorio  en  ambas  bases  de datos,  los  niveles  de

lactato,  la  diuresis  y  las  variables  relacionadas  con  el  equilibrio  ácido-base  fueron  las variables

más importantes  para  determinar  las  muertes  por  sepsis  en  la  UCI.  Los  niveles  medios  de  potasio

fueron más  críticos  en  la  base  de datos  MIMIC  III  que  en  las  locales.

© 2024  El  Autor(s).  Publicado  por  Elsevier  España, S.L.U. Este  es  un  art́ıculo  Open  Access  bajo

la licencia  CC  BY-NC-ND  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The  concept  of  sepsis  began to  be  defined  in 1992,  when
the  first  consensus  on  sepsis,  Sepsis-1,  was  published.  The
concept  gave  rise  to  the Systemic  Inflammatory  Response
(SIRS),  defining  sepsis  as  a ‘‘systemic  inflammatory  response
associated  with  a  disease.’’  In  this consensus,  levels  of
severity  were also  added:  severe  sepsis  and septic  shock.
In  2001,  modifications  were  made:  a group  of  experts  met
and called  this meeting  Sepsis-2.  Then,  some  values  used
for diagnosis  were adjusted;  however,  there  were  no  signif-
icant  changes  in the definition  of  sepsis.  A working  group
met  again  in 2016  and  published  an update  on  sepsis  called
Sepsis-3,  which  determined  the  most current  definition.
It  was  published  by  The  Sepsis Definitions  Working  Group
and  defined  sepsis  as  ‘‘a  life-threatening  organ  dysfunction
caused  by  a  dysregulated  host  response  to  infection.’’  In
addition  to  the definition,  it  included  tools  to  help  diagnose
sepsis.1,2

Concerning  the loss  of  human  life, sepsis  entails  a high
economic  cost  for  healthcare  systems.  In  the United States,
one-third  of patients  diagnosed  with  sepsis  die at a cost
of  about  $20,3  million  a  year.  In Spain,  the  incidence  is
100  cases  per  100,000  people/year,  and  mortality  is  also
between  20%  and  43%.  The  estimated  average  cost  is  about
$20,000  for  each episode  of  severe  sepsis.3---5 A  consider-
able  drawback  in managing  sepsis  is  the  great  difficulty  in
reaching  a  diagnosis.There  is  no  specific  test  to  establish  the
diagnosis,  and  the symptoms  present  very  heterogeneously,
making  it  more  challenging  to  determine  the onset  of  the
disease  and,  consequently,  start treatment  as  soon  as  pos-

sible. There  is  evidence  that  early  diagnosis  of  sepsis  and,
therefore,  Early  initiation  of  treatment  significantly  reduces
morbidity  and mortality.

Initially,  during  the onset  of  sepsis,  it is  difficult  to  find
symptoms  or  parameters  that  help  us  diagnose  it.  When
we  find  easily  recognizable  signs,  the disease  is  usually  in
an advanced  stage,  which  entails  more  complex  treatment
and  a  worse  prognosis.  The  efforts  of many  researchers  are
focused  on  developing  tools that allow  early  detection  of
sepsis  and  its  optimal  management.  Most  hospitals  have
tools  that  attempt  to  detect  and  predict  the  onset  of sep-
sis  and its  complications.  The  most used  currently  are  the
Modified  Early  Warning  Score  (MEWS)  and  its  different  ver-
sions,  Systemic  Inflammatory  Response  Syndrome  (SIRS),  the
Sequential  Organ  Failure  Assessment  (SOFA),  and its  faster
variant  qSOFA.5---7

The  introduction  of electronic  medical  records  in most
hospitals  makes  it  easier  to access  and use  patient
data  (since)  it  is  collected  in a  structured  way  and
can  be accessed  quickly.  It  favors  the development
and  implementation  of  prediction  and decision-making
systems.  These  tools facilitate  processing  the large
amount  of  data  we  face when  making  decisions  when
treating  patients.  These  tools  aim  to  improve  patient
outcomes  by  facilitating  early  diagnosis  and  treatment
decision-making.3,7

Traditional  methods  (MEWS,  SOFA,  SIRS,  among  others)
are being  widely  questioned;  Numerous  studies  defend  Arti-
ficial  Intelligence  (AI) programs.  Implement  algorithms  that
predict  sepsis,  obtaining  results  with  greater  sensitivity  and
specificity  than  traditional  methods.
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Machine  learning  and  Big  Data  (BD)  are  techniques
expected  to  displace  traditional  methods  and  assist  in
research  that  cannot  be  performed  with  patients  due  to
ethical  limitations  or  other  reasons.8,9

Some  algorithms’  lack  of  transparency  and the  staff’s
poor  knowledge  of  their  operation  also  generate  resistance
to  their  application,  creating  distrust  and rejection  of  the
system.10,11

Our  objective  was  to  develop  a  machine  learning  model  of
ICU  mortality  due  to  sepsis  in  a local  and in an international
population  as  MIMIC  III  open  database  and  to  evaluate  the
performance  of  each one

Methods

Design:  Cross-sectional  descriptive  study.
Setting:  It was  carried  out  in  the Intensive  Care  Units

(ICUs)  of the Virgen  de  la  Arrixaca  University  Hospital,
Santa  Lucía  Hospital,  and Los  Arcos  Hospital.  The  MIMIC  III
database.

Study population:  180  patients  diagnosed  with  sepsis,
56  of  whom  died  in the  ICU. All  patients  who  met  the
hospital’s  inclusion  and  exclusion  criteria  during  2022−23
were  selected.  Informed  consent  was  obtained  from  the
patients  and/or  family  members  for  the anonymous  use  of
the  data.  This  study  was  carried  out by the principles  of  the
Declaration  of  Helsinki  and was  registered  with  the  hospi-
tal’s  research  committee.  IRB Declaration  Code  646 Health
Area1Arrixaca.  Murcian  Health  Service.  Murcia  Spain.  Autho-
rization  date  07/02/2022.

1  Database  obtained  from  local  hospital

Inclusion  criteria:

-  Over  18  years.
-  ICD-10  (International  Classification  of  Diseases):  sepsis,

severe  sepsis,  or  septic  shock.
-  Computerized  clinical  history.

Exclusion  criteria:

-  Under  18  years
- Patients  admitted  for reasons  other  than  the CDI  above.
-  Patients  were  readmitted  to  the ICU  within  < 24  h.

Variables  from  the  hospital  database  obtained  during the
first 24  h:

Qualitative:
Exitus:  Death  of  the  patient  diagnosed  with  sepsis  in the

Intensive  Care Unit.  Dichotomous  qualitative  variable  Yes
(1)/No  (0)

Sex:  The  patient’s  sex is  reflected  in the medical  history.
The  qualitative,  nominal,  discrete,  independent  variable  is
male  (0) or  female  (1).

-  Hypertension:  Reflected  in the medical  history  in  the
medical  evaluation  upon  admission.  Independent  dichoto-
mous  qualitative  variable:  Yes  (0), No  (1).

- Diabetes:  Reflected  in  the medical  history  in  the medi-
cal  evaluation  upon  admission.  Independent  dichotomous
qualitative  variable:  Yes  (0),  No  (1).

- Consumption  of  vasoactive  drugs:  Existence  of  a  record
of  vasoactive  drug consumption  in the electronic  medical
record.  Variable,  qualitative,  dichotomous,  dependent:
Yes  (0),  No  (1).

Quantitative:
Heart  rate  (heart  rate):  The  number  of beats  per  minute

is  automatically  uploaded  to  the  electronic  medical  record
every hour.  It  is  quantitative,  discrete,  and  dependent.

Respiratory  rate  (Resprate):  The  number  of breaths  per
minute  is automatically  uploaded  to  the electronic  medical
record  every  hour.  It is  quantitative,  discrete,  and  depen-
dent.

Systolic  blood  pressure  (SBP):  Expressed  in mmHG,  it
is  captured  by  the blood  pressure  monitor  automatically
or  manually  with  a  cuff  or arterial  line  and  automatically
uploaded  to the  electronic  medical  record  every  hour.  It  is
quantitative,  discrete,  and  dependent.

-  Diastolic  blood  pressure  (DBP):  Expressed  in  mmHG,
captured  by  the blood  pressure  monitor  automatically
or  manually  with  a  cuff or  arterial  line,  automatically
uploaded  to  the electronic  medical  record  every hour.
Quantitative,  discrete,  dependent.

Oxygen  saturation  (SpO2):  This  is  expressed  as  a percent-
age  of  the  saturation  captured  by  the monitor  with  hourly
finger  pulse  oximetry.  It  is  quantitative,  discrete,  and  depen-
dent.

Temperature:  Taken  manually  by  a clinical  assistant  with
a  tympanic  meter  at least  every  hour,  expressed  with  two
whole  numbers  and one decimal.  It is  quantitative,  contin-
uous,  and  dependent.

Arterial  or  venous  lactate  level:  The  lactate  figure
obtained  after  arterial  or  venous  blood  gases  with  variable
frequency  are  analyzed  in the  units  available  in the ICU  and
expressed  in millimoles  per  liter  (mmo/l).  It  is  quantitative,
continuous,  and dependent.

Potassium  levels  (K):  Potassium  levels  obtained  after
performing  arterial  or  venous  blood  gases  with  variable  fre-
quency,  analyzed  in the units  available  in the  ICU, and
expressed  in mEq/l.  They  are quantitative,  continuous,  and
dependent.

-  arterial  or  venous  pH: The  pH  level  figure  obtained  after
performing  arterial  or  venous  blood  gases  with  variable
frequency,  analyzed  in  the  units  available  in the  ICU.  It  is
quantitative,  continuous,  and dependent.

Body  weight:  Obtained  from  the  electronic  medical
record  (EHR),  expressed  in kilograms  (kg). It is  quantitative,
continuous,  and independent.

-  Age:  Figure  obtained  from  the  EHR,  expressed  in  years
completed.  Quantitative,  discreet,  independent.

The  hospital  database  was  automatically  extracted  by
dumping  by  the  research  staff  of  the centers  into  a cell  for-
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Table  1  Descriptive  statistics  of  quantitative  variables  according  to  exitus.

Variables  mean  sd  p25%  p50%  p75%  p-value

Age  Live  64,40  15,94  56,00  67,00  76,00  0,65

Dead 65,35  11,28  60,00  67,00  72,50

Breathrate Live  21,64  5,13  18,26  19,84  25,03  0,62

Dead 21,24  4,16  17,91  20,85  24,48

DBP Live  58,49  13,54  51,67  58,83  65,38  0,81

Dead 57,91  8,58  51,34  56,14  63,88

Heartrate Live  92,86  17,97  81,16  93,82  104,79  0,01*

Dead  100,96  18,18  89,19  97,12  115,46

Lactate Live  2,33  2,02  1,23  1,90  2,83  <  0,001*

Dead  4,71  3,88  1,78  3,33  6,59

Ph Live 7,35  0,06  7,31  7,36  7,38  <  0,001*

Dead  7,24  0,11  7,17  7,25  7,31

Potasium Live  4,20  0,67  3,68  4,14  4,60  0,48

Dead 4,27  0,72  3,81  4,16  4,71

SatO2 Live  96,42  2,31  95,21  96,89  97,71  0,01*

Dead  93,89  7,22  93,32  94,94  96,64

SBP Live  111,28  21,42  101,79  113,21  122,12  0,05*

Dead  103,17  19,07  93,33  100,61  108,68

Temp Live  36,44  0,63  36,03  36,41  36,86  <  0,001*

Dead  36,11  0,73  35,64  36,10  36,67

Urine Live  80,50  41,65  48,33  76,82  108,64  <  0,001*

Dead  49,13  50,17  7,93  33,61  72,73

* p-value < 0,05 Age: years, SpO2:%, SBP-DBP: mmHg, Lactate: mmol/l, Potassium: mEq/l. All variables correspond to averages during
ICU stay.

mat  of  the  IntelliSpace  Critical  Care  & Anesthesia  (ICCA)
healthcare  software.

2  MIMIC  III  database

The  MIMIC  III database  was  extracted  from  Physionet:
https://physionet.org/content/mimic3wdb/1.0/.1.

The  total  database  initially  consisted  of  80  variables
and 4559  patients.  A  correlation  study  was  performed,
and  strongly  correlated  variables  were  eliminated.  The
reduced  database  contained  31  variables  and  4559  patients.
The  objective  was  to  find a  classification  model  based
on  exitus  (hospital  expire  flag)  A total  of  31  variables
were  collected  from  the  MIMIC  III database:  categorical
sex,  ethnicity,  metastatic  cancer,  diabetes,  quantitative;
age,  hospital  elixhauser,  vent,  couch,  sirs,  qsofa,  anion-
gap  medium,  bocarbonate  medium,  creatinine  medium,
glucose  medium,  hemoglobin  medium,  lactate  medium,
platelet  means,  potassium  means,  inr means,
sodium  means,  wbc  means,  heartrate  means,  sysbp  means,
diasbp  means,  resprate  means,  tempc  means,  spo2  media
s,  urine  output,  sepsis,  hospital  expire flag.

Statistical  analysis  in both  databases  was  performed  using
SPSS  software  for  Windows  (version  25.0,  SPSS,  Chicago,  Illi-
nois,  USA)  and R (version  3.5.1).  A bivariate  analysis  was
performed,  and the normality  of  the  variables  was  checked
using  the  Kolmogorov-Smirnoff  test.  The  non-parametric
Wilcoxon  rank  sum  test  (Mann-Whitney  test)  was  used for
two  samples.  Random  forest-type  classification  models  were
implemented.  The  ROC  curve  calculated  the AUC  (Area
Under  the  Curve),  and  the  confusion  matrix  (actual  vs  pre-

dicted  group)  estimated  the  classification  models’  accuracy,
precision,  sensitivity,  and specificity.

Results

In  the database  collected  at the  hospital,  the study  popu-
lation  was  180 patients,  of  which  42.85%  of  the 110 male
patients  and  46.80%  of  the 70  female  patients  died  from
sepsis.  There  were  no  statistically  significant  differences
between  death  and  ICU  admission  days.  And  the  total  days
of  stay  in the ICU  (until  death  or  discharge  to  the ward).
A summary  of  the  descriptive  statistics  of our database  is
shown  in  Table 1.

Regarding  the qualitative  variables  from the local
database,  no  statistically  significant  relationship  was  found
between  sex  and  exitus,  hypertension  and  exitus  (p-
value  = 0,098),  and diabetes  and  exitus (p-value  = 0,138).

In  the  case  of  the  qualitative  variables  collected  in the
MIMIC  database  the following  variables  were statistically
significant:  mechanic  ventilation-exitus  (p-value  <  -2,2e-
16), renal  Replacement  therapy-exitus  (p-value  = 0,00075),
metastatic  cancer  (p-value  = 3.02e-10)  and  blood  culture
positive  (p-value  = 7.528e-06).Diabetes-exitus  variable  was
non-statistically  significant  (p-value  = 0,7735)

The  model  was  validated  by  dividing  the  local  database
into  a training  database  containing  80%  of  the data  on  which
a  random  forest  was  computed  and  a  test  database  contain-
ing  the  remaining  20%  of  the  data  on  which  this model  was
applied.  Fig.  1  shows the random  forest  with  the  variables
that  have been  important  in determining  death  in patients
with  sepsis.
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Figure  1 Random  Forests  from  local  database.

Figure  2  ROC  curve  of  the  random  forest  corresponding  to

the hospital  database.

The  most  critical  variables  in our  database  have  been
the  average  lactate  level,  diuresis(urine  output),  pH, and
systolic  pressure.

The  model  has an  accuracy  of  98%  (0.89−0.99),  a sensi-
tivity of  97%  and a  specificity  of  100%.  The  ROC  curve  and
the  AUC  (0,97(0,91---1))  are  shown  in the Fig.  2.

The  study’s  second  objective  was  calculating  the ran-
dom  forest  obtained  from  the public database  MIMIC  III.  The
study  population  was  4559  patients,  of which  741 patients
died  from  sepsis.  There  were  no  significant  differences
between  the  sexes.  Table  2  shows  the descriptive  statis-
tics  from  the  MIMIC  III  database.  The  variables  (mean):  Age,
anion  gap,  bicarbonate,  creatinine,  glucose,  lactate,  potas-
sium,inr,  sodium,  bun,wbc,  heart  rate,  sysbp,  diasbp,  bp,
respiration  rate,tempc,  spo2,  and  urine  output  were  statisti-
cally  significant  differences  A Random  Forest  based  on  exitus
(hospital  expire  flag) is  carried  out  in the SEPSIS  GROUP
database  that  shows  the variables  of  importance  (Fig.  3).
The  sensitivity  of the  classification  model  was  97.55%,  the
specificity  was  100%,  and the accuracy  was  98.28%  with  an
AUC  of  97.3%  (0.968−0.981)  (Fig.  4).

The  most  significant  variables  are  the  average  urinary
output,  lactate  mean,  anion  gap,  spO2,  age,  potassium
mean,  respiration  rate,  and  systolic  blood  pressure  mean.

The  standard  variables  in both  databases  that  have  shown
the  most significant  importance  have  been  the average  lac-
tate  and  the average  urine  production,  adding  the  average
oxygen  saturation,  the  average  temperature,  and,  in our
case,  the  pH  measurement  that  could  correspond.  In the
case  of the  MIMIC  III,  with  the bicarbonate  mean  and  Annion
gap.  Other  fundamental  constants  in the  MIMIC  III,  such as
the  average  respiratory  rate  and potassium  mean  that  the
hospital’s  database  appears,  but  not  with  relevance.  Systolic
pressure  is  quite  important  in both  databases.

Finally,  we  proposed  to  evaluate the  model  calculated
from  the  local  database  as  an external  validation  of  the
MIMIC  III  database.  For  this  purpose,  we  use  the  com-
mon  variables  between  the  local  and MIMIC  III  databases.
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Table  2  Descriptive  Statistics  MIMIC  III database.

Variables  mean  sd  p25%  p50%  p75%  p-value

age  live  64,13  17,80  52,83  65,50  78,42  <  0,001

dead 70,27  16,05  59,86  73,02  83,18

aniongap max  live  16,13  4,64  13,00  15,00  18,00  <  0,001

dead 19,43  6,41  15,00  18,00  22,00

aniongap min  live  12,44  3,08  10,00  12,00  14,00  <  0,001

dead 14,80  4,84  12,00  14,00  17,00

bicarbonate  max  live  24,84  4,39  22,00  25,00  27,00  <  0,001

dead 22,98  5,55  20,00  23,00  26,00

bicarbonate min live  21,71  4,77  19,00  22,00  24,00  <  0,001

dead 19,03  6,10  15,00  19,00  23,00

bun max live  30,32  24,70  15,00  22,00  36,00  <  0,001

dead 42,17  27,92  22,00  34,00  54,00

bun mean  live  27,35  22,03  14,00  20,00  33,00  <  0,001

dead 38,94  26,52  19,50  31,50  50,50

bun min  live  24,39  20,02  12,00  18,00  30,00  <  0,001

dead 35,81  25,40  18,00  28,00  48,25

chloride max  live  107,95  6,47  104,00  108,00  112,00  0,844

dead 108,01  7,74  103,00  108,00  113,00

chloride min  live  101,95  6,73  99,00  102,00  106,00  0,041

dead 101,35  7,45  97,00  102,00  106,00

creatinine  max  live  1,67  1,77  0,80  1,10  1,70  <  0,001

dead 2,04  1,44  1,00  1,60  2,60

creatinine  min  live  1,30  1,29  0,70  0,90  1,30  <  0,001

dead 1,64  1,24  0,80  1,30  2,10

diasbp mean  live  61,45  10,07  54,70  60,69  67,37  <  0,001

dead 58,96  11,02  51,45  57,92  65,24

glucose mean  live  181,11  2317,67  112,72  133,00  161,46  0,522

dead 156,99  69,20  114,50  140,90  182,32

heartrate  mean  live  87,76  16,11  75,90  87,26  98,64  <  0,001

dead 91,92  18,74  76,97  91,68  105,59

hematocrit max live  35,95  6,11  31,70  35,60  40,00  0,794

dead 35,88  6,78  31,20  35,10  40,10

hematocrit min live  29,68  6,19  25,30  29,40  33,90  0,536

dead 29,84  6,74  25,00  29,60  34,30

hemoglobin max live  11,97  2,10  10,40  11,90  13,40  0,087

dead 11,81  2,30  10,20  11,60  13,20

hemoglobin min live  10,02  2,10  8,50  9,90  11,45  0,111

dead 9,88  2,25  8,30  9,70  11,40

inr max  live  1,63  1,35  1,20  1,30  1,60  <  0,001

dead 2,14  1,82  1,20  1,60  2,30

inr min  live  1,35  0,61  1,10  1,20  1,40  <  0,001

dead 1,60  0,92  1,10  1,30  1,80

lactate mean  live  2,13  1,27  1,30  1,80  2,55  <  0,001

dead 3,60  2,92  1,70  2,55  4,50

meanbp mean  live  76,71  10,20  69,63  75,51  82,95  <  0,001

dead 73,39  11,56  66,21  71,98  79,55

platelet max  live  245,61  128,52  163,00  225,00  300,00  0,975

dead 245,78  149,35  139,75  215,00  325,00

platelet min  live  196,78  109,80  126,00  180,00  245,00  0,315

dead 191,59  131,90  95,00  166,00  252,50

potassium  max  live  4,69  0,95  4,10  4,50  5,10  <  0,001

dead 4,94  1,04  4,20  4,70  5,50

potassium  min  live  3,71  0,55  3,40  3,70  4,00  <  0,001

dead 3,88  0,72  3,40  3,80  4,30

resprate  mean  live  19,53  4,08  16,57  18,88  21,85  <  0,001

dead 21,91  4,68  18,45  21,50  24,86
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Table  2  (Continued)

Variables  mean  sd p25%  p50%  p75%  p-value

sodium  max  live  140,46  5,17  138,00  140,00  143,00  0,259

dead 140,75  6,61  137,00  141,00  144,00

sodium min  live  136,05  5,39  133,00  136,00  139,00  0,195

dead 135,71  6,68  132,00  136,00  140,00

spo2 mean  live  97,11  1,96  95,92  97,33  98,62  <  0,001

dead 95,86  4,09  94,56  96,76  98,47

sysbp mean live  117,30  15,60  106,06  114,58  126,38  <  0,001

dead 110,63  16,76  99,94  107,61  119,80

tempc mean live  36,90  0,66  36,47  36,87  37,32  <  0,001

dead 36,57  1,02  36,11  36,62  37,19

urineoutput  live  1968,71  1540,91  1025,50  1680,50  2587,25  <  0,001

dead 1197,32  1345,83  351,00  855,00  1575,00

*p < 0.05, Age: years, SpO2:%, SBP-DBP: mmHg, Lactate: mmol/l, Potassium: mEq/l. All  variables correspond to averages during ICU
stay.

Figure  3 Random  Forest  from  the  MIMIC  III database  (Sepsis  Group).

We  included  the  common  12  variables:  Age,  exitus,
uci  days,  Heartrate  mean,  Resprate  mean,  Sysbp  mean,
Diasbp  mean,  Spo2  mean,  Tempc  mean,  Urine  mean,  Lac-
tate  mean  and  Potassium  mean.  The  accuracy  was  0,78
(0,49---0,95)  from  the  local  database  and  an AUC  of  0,70
(0,40---1).  The  explanation  for  this low  accuracy  was  that
the  variable  ph  mean  was  essential  in the model  built with
our  local  database.  From  the  MIMIC  database,  the  accuracy
was  only  0,56  (0,55---0,58)  and  an AUC of 0,58  (0,56---0,60).
The  accuracy  in this  case  could  have  been  lower  due  to  the
reduction  of  the  number  of  essential  variables  from  31  to  12
variables.

We concluded  that the  external  validation  of  our  model
was  not  possible  due  to  the different  number  of variables
and  the absence  in the MIMIC  III  database  of a  critical  vari-
able  such  as  ph  mean

Discussion

Since  the  2000s,  the publication  of  articles  related  to
machine  learning  has  increased  significantly,  becoming  one
of  the study  trends  at the health  research  level.  Open
access  to  extensive  patient  databases  allows  machine  learn-
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Figure  4  ROC curve  corresponding  to  the Random  Forest  of

the MIMIC  III  database.

ing techniques  to  be  applied  to  diagnosing  and  prognosis
different  diseases.  In  this  work,  we  have  used  the  MIMIC
III  public  access  database  of  ICU  patients  with  sepsis  to  con-
trast  the  model  calculated  with  machine  learning  techniques
with  the  one  generated  with  our  database.

Many  published  articles  use  the  MIMIC  III  database  to
evaluate  risk  variables  in  patients  with  sepsis.  Vital signs,
age,  demographic  data,  and the  MIMIC  III database  helped
develop  the  Insight  algorithm,  which  performed  well  com-
pared  to  the  various  methods  used  until  then.12

Calvert  et al.  carried  out  the study  with  the  MIMIC
II  database,  using  both  vital signs  and  laboratory  values
(Procalcitonin  and  lactic  acid);  using  Insight,  they  obtained
better  results  than  other  models.13 Other  authors,  such as
Kam  and  Kim,  extracted  vital  signs  from  MIMIC  II to per-
form  a  deep-learning  study.  They  compared  deep  learning
networks  with  LSTM  (long  short-term  memory)  architec-
tures.  They  obtained  better  LSTM  results  than  other  sepsis
prediction  methods.14 Moor  et  al. performed  a  sepsis  pre-
diction  study  mixing  machine  learning  techniques  with  DTW
(Dynamic  et  al.).  They  used  MIMIC  III as  a  database  to  extract
vital  signs  and  laboratory  values.  They  obtained  good  results
compared  to  other  works.15

Nemati  et  al. carried  out  a test  with  two  different
databases;  they  used both  Emory  Healthcare  and  MIMIC  III,
the  former  to  develop  the algorithm  and  the latter  as  a  con-
trol.  They  took  as  values  the vital signs,  laboratory  results,
demographic  data,  surgical  history,  and  statistical  data.16

Mao  et  al.  relied  on  the Insight  algorithm  and used  vital
signs  from  several  hospitals  to  try to predict  sepsis,  severe
sepsis,  and  septic  shock. They  used  a  Gradient  tree-boosting
algorithm.  The  database  used to  train  the algorithm  was
MIMIC  III,  using  transfer  learning,  with  which  they  obtained
better  results  than  other  databases.5

Scherph  et  al. calculated  a neural  network  architecture
using  the  MIMIC  III database,  from  which  they  obtained  vital

signs  and  white  blood  cell  counts.  They  compared  the  results
with  the  Insight  algorithm.  They obtained  better  results  in
terms  of  AUC.2

Van  Steenkiste  et al. developed  a  blood  culture  results
prediction  study  with  an  LSTM  structure.  Blood  cultures
are essential  in choosing  sepsis  treatment.  They took  lab-
oratory  and vital sign  data  in the hospital  emergency
environment  to  carry  it out. They concluded  that the pre-
diction  period  of the previous  72  h is  ideal  and that  they
obtained  better results  with  deep learning  than  with  other
methods.17 Schaomoni  et  al. experimented  with  linear  and
non-linear  models,  their significant  contribution  being  a  new
and  verified  database.  They  used  several  parameters,  such
as  respiratory  rate  and  C-reactive  protein  (CRP).  Further-
more,  they  investigated  the individual  evolution  of  each
prediction.18

Ribas  Ripoll  et  al.  analyzed  the mortality  prediction  in
ICU  patients  with  sepsis  by  developing  a new  method  called
the  Quotient  Basis  Kernel  (QBK).  They  simplified  the  Fisher
kernel  and  used variables  such as  days of  stay  or  vasoactive
agents  from  the MIMIC  II  database.19

In  our  study  carried  out with  the  databases  of  several
hospitals  and  the  public  database  MIMIC  III,  the essential
variables  standard  to  the local  databases  were  mean  lac-
tate,  mean  pH, urine  output,  and  partial  O2  saturation  in
addition  to  age,  and  the minimum  SBP,  achieving  an accuracy
of  95%---98%  of  the  predictions  of  death  due  to sepsis.  The
variables  respiratory  rate,  amount  of  urine,  and minimum
potassium  were  also  added  to  the classification  model  calcu-
lated  on  the  MIMIC  III  database.  The  importance  of  potassium
in the MIMIC  III  database  is  relevant,  while  in our  hospital,  it
is  identified  in  the random  forest  but  with  less  importance.

Of  all  the  variables  in both  databases,  lactate  has  par-
ticular  relevance.  According  to  recent  publications,  high
circulating  levels  of  lactate  are  associated  with  the  severity
and  mortality  of  sepsis.  Lactate  could  promote  the  release
of  HMGB1  during  sepsis.  Some  studies  have  determined
that  lactate  participates  in the lactylation  and  acetyla-
tion  of HMGB1  in macrophages  during  polymicrobial  sepsis.
Macrophages  can uptake  extracellular  lactate  via monocar-
boxylate  transporters  (MCTs)  to promote  HMGB1  lactylation
through  a  p300/CBP-dependent  mechanism.  Lactate  has
been  shown  to  stimulate  HMGB1  acetylation  through  sup-
pression  of  the Hippo/YAP-mediated  SIRT1  deacetylase  and
�-arrestin2-mediated  recruitment  of  p300/CBP  acetylases
to  the nucleus  via  G protein-coupled  receptor  81  (GPR81).
Lactylated/acetylated  HMGB1  is  released  from  macrophages
through  exosome secretion,  increasing  endothelial  perme-
ability.  In  vivo,  reducing  lactate  production  and/or  inhibition
of  GPR81-mediated  signaling  decreases  circulating  levels  of
exosomal  HMGB1  and  improves  survival  outcomes  in polymi-
crobial  sepsis.20

The  main  limitation  of this  work  was that  the variables
of  the local  database,  obtained  from  local  hospital  records,
and  the MIMIC  III  database  have  a very  different  number  of
variables  (31 MIMIC  III  and  15  local  databases),  and some
variables  are not  common  to  both  databases.  In our  study,
the  variable  pH  mean  was  the most  critical  variable  in the
random  forest  and is  not  included  in  the  MIMIC  III database.
We  could equipare  pH  with  the bicarbonate  and  anion  gap
values  of the  MIMC  II database.  These  variables  are  impor-
tant  in  the random  forest  calculated  with  this  database.  As
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these  variables  are not  comparable  to pH,  it  is impossible
to  validate  our  model  with  this  database.  In any  case,  the
study’s  main  conclusion  is  the  importance  of  the  variables
urine  output,  satO2,  Sisbp  mean,  lactate  levels,  and  varia-
bles  related  to  acid-base  equilibrium,  such  as  pH  and  anion
gap.  Another  conclusion  is that  despite  the difference  in
the number  of variables,  the  machine  learning  models  cal-
culated  with  the local  database  and the MIMIC  III  database
have  similar  accuracies,  sensitivities,  and  specificities.

Conclusion

Many authors  have  developed  predictive  models  for  death
in  sepsis  patients  admitted  to  intensive  care units.  Artifi-
cial  intelligence  techniques  and access  to  standardized  and
public  databases  are  essential  to developing  these  models.
In  both  databases,  lactate  levels,  average  urine production,
and  variables  related  to  acid-base  equilibrium  are critical
variables  in the prognosis  of sepsis.
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