array:22 [
  "pii" => "S2173572720302113"
  "issn" => "21735727"
  "doi" => "10.1016/j.medine.2020.09.005"
  "estado" => "S300"
  "fechaPublicacion" => "2021-03-01"
  "aid" => "1586"
  "copyrightAnyo" => "2020"
  "documento" => "article"
  "crossmark" => 1
  "subdocumento" => "sco"
  "cita" => "Med Intensiva. 2021;45:67-8"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "Traduccion" => array:1 [
    "es" => array:19 [
      "pii" => "S0210569120303156"
      "issn" => "02105691"
      "doi" => "10.1016/j.medin.2020.09.001"
      "estado" => "S300"
      "fechaPublicacion" => "2021-03-01"
      "aid" => "1586"
      "copyright" => "Elsevier España, S.L.U. y SEMICYUC"
      "documento" => "article"
      "crossmark" => 1
      "subdocumento" => "sco"
      "cita" => "Med Intensiva. 2021;45:67-8"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:1 [
        "total" => 0
      ]
      "es" => array:10 [
        "idiomaDefecto" => true
        "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>"
        "titulo" => "<span class="elsevierStyleItalic">Spanish influenza score&#58;</span> poder predictivo sin renunciar a lo cl&#225;sico"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "67"
            "paginaFinal" => "68"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "Spanish influenza score&#58; Predictive power without giving up the classic"
          ]
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "J&#46;L&#46; Garc&#237;a Garmendia"
            "autores" => array:1 [
              0 => array:2 [
                "nombre" => "J&#46;L&#46;"
                "apellidos" => "Garc&#237;a Garmendia"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "S2173572720302113"
          "doi" => "10.1016/j.medine.2020.09.005"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720302113?idApp=WMIE"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569120303156?idApp=WMIE"
      "url" => "/02105691/0000004500000002/v1_202102260805/S0210569120303156/v1_202102260805/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:19 [
    "pii" => "S2173572720302186"
    "issn" => "21735727"
    "doi" => "10.1016/j.medine.2020.05.009"
    "estado" => "S300"
    "fechaPublicacion" => "2021-03-01"
    "aid" => "1538"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
    "documento" => "article"
    "crossmark" => 1
    "subdocumento" => "fla"
    "cita" => "Med Intensiva. 2021;45:69-79"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:13 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Original</span>"
      "titulo" => "Spanish Influenza Score &#40;SIS&#41;&#58; Usefulness of machine learning in the development of an early mortality prediction score in severe influenza"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "en"
        1 => "es"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "69"
          "paginaFinal" => "79"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "<span class="elsevierStyleItalic">Spanish Influenza Score</span> &#40;SIS&#41;&#58; utilidad del <span class="elsevierStyleItalic">Machine Learning</span> en el desarrollo de una escala temprana de predicci&#243;n de mortalidad en la gripe grave"
        ]
      ]
      "contieneResumen" => array:2 [
        "en" => true
        "es" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:8 [
          "identificador" => "fig0015"
          "etiqueta" => "Figure 3"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr3.jpeg"
              "Alto" => 1115
              "Ancho" => 2096
              "Tamanyo" => 83821
            ]
          ]
          "detalles" => array:1 [
            0 => array:3 [
              "identificador" => "at0015"
              "detalle" => "Figure "
              "rol" => "short"
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Area under the ROC curve &#40;AUC ROC&#41; for SIS obtained in the validation group&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => " Spanish Working Group in Severe Influenza A &#40;GETGAG&#41; of the Sociedad Espa&#241;ola de Medicina Intensiva Cr&#237;tica y Unidades Coronarias &#40;SEMICYUC&#41;"
          "autores" => array:1 [
            0 => array:1 [
              "apellidos" => "Spanish Working Group in Severe Influenza A &#40;GETGAG&#41; of the Sociedad Espa&#241;ola de Medicina Intensiva Cr&#237;tica y Unidades Coronarias &#40;SEMICYUC&#41;"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "S0210569120301893"
        "doi" => "10.1016/j.medin.2020.05.017"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569120301893?idApp=WMIE"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720302186?idApp=WMIE"
    "url" => "/21735727/0000004500000002/v1_202102260751/S2173572720302186/v1_202102260751/en/main.assets"
  ]
  "en" => array:13 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>"
    "titulo" => "Spanish influenza score&#58; Predictive power without giving up the classic"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "67"
        "paginaFinal" => "68"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "J&#46;L&#46; Garc&#237;a Garmendia"
        "autores" => array:1 [
          0 => array:3 [
            "nombre" => "J&#46;L&#46;"
            "apellidos" => "Garc&#237;a Garmendia"
            "email" => array:1 [
              0 => "joseluis.garciagarmendia@sjd.es"
            ]
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "Unidad de Cuidados Intensivos&#44; Servicio de Cuidados Cr&#237;ticos y Urgencias&#44; Hospital San Juan de Dios del Aljarafe&#44; Bormujos&#44; Sevilla&#44; Spain"
            "identificador" => "aff0005"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "<span class="elsevierStyleItalic">Spanish influenza score</span>&#58; poder predictivo sin renunciar a lo cl&#225;sico"
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">The present number of Medicina Intensiva publishes a study on a Spanish severe influenza registry that develops a predictive score of mortality in the Intensive Care Unit &#40;ICU&#41;&#46;<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">In the 1980s&#44; intensive care became immersed in the understanding of reality and in the adoption of aids for decision making based on severity scores&#46; Despite its particularities&#44; the APACHE II remains valid for the assessment of severity in the critically ill&#46; These scores were based on the accumulation of a large body of representative data and made use of logistic regression &#40;LR&#41; and multivariate analytical techniques to generate predictive models&#44; with the use of beta-estimators to produce the individual scores&#46; In relation to investigators and clinicians&#44; the level of familiarity with the mathematical details needed to obtain the beta-estimators is sufficient&#44; and there is a reasonable correlation between understanding and the odds ratios &#40;ORs&#41; and their corresponding confidence intervals&#8212;forming a methodological construct that is both comprehensible and interpretable&#46;<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">On the other hand&#44; there has been an exponential growth in the use of big data analytical techniques through machine learning &#40;ML&#41;&#44; as can be seen from the number of literature references found in Medline&#46;<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> However&#44; one of the problems of ML is the difficulty of transferring the analyses to the clinical practice setting&#46;<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> In contrast to the conventional statistical analytical techniques&#44; the results of the published studies possess good mathematical indicators&#44; but clinicians see only limited practical applicability in them&#46;<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> This is due in part to the difficulty of understanding the mechanisms through which the results or outcomes are generated&#44; and of using a large number of variables simultaneously&#46; Such analyses are probably more concordant to the complex biological reality&#44; but reduce the possibilities for adequate handling on the part of the healthcare professionals within the clinical practice setting&#46;</p><p id="par0020" class="elsevierStylePara elsevierViewall">In this regard&#44; the article presented in this number of Medicina Intensiva pursues a double aim&#58; to incorporate ML techniques to a large database on severe influenza in the ICU&#44; and to generate a mortality risk score combining this approach with other classical techniques more amenable to incorporation to clinical practice&#46;</p><p id="par0025" class="elsevierStylePara elsevierViewall">Each year&#44; during the winter months&#44; severe influenza poses a challenge for ICUs all over the world&#46; While the influenza A &#40;H1N1&#41; outbreak in 2009 was one of the most important episodes&#44; there have been a number of seasons in which severe influenza has generated care problems in ICUs&#44; affecting also young individuals&#44; causing severe respiratory distress&#44; with prolonged admissions&#44; and a high mortality rate&#46;<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a></p><p id="par0030" class="elsevierStylePara elsevierViewall">Comparison of the results obtained with conventional techniques and those obtained through advanced random forest analysis &#40;ML&#41; reinforces the findings&#44; and appears to indicate that the new techniques will be able to add information to the classical analytical methods &#8211; though much of the substantial information can be gained from the latter&#46;<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> Nevertheless&#44; in order for the LR techniques to offer consistency&#44; we need quality registries of sufficient size&#44; as has been guaranteed in this study&#8212;in contrast to other recent publications in which an insufficient sample size strengthened the predictive capacity of ML over LR&#46;<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a></p><p id="par0035" class="elsevierStylePara elsevierViewall">The development of a mortality predictive score in critical patients with severe influenza may help in decision making referred to patient admission&#44; treatment &#40;prone decubitus&#44; extracorporeal oxygenation&#44; nitric oxide&#41; or even patient transfer for the application of advanced techniques in other centers&#46; Another utility of this score is the possibility of stratifying risk groups for guiding or orientating therapeutic trials&#44; as well as for the benchmarking of units&#46; The use of variables present at the time of admission in this study also must be viewed as an advantage&#44; since it would facilitate early counseling in decision making&#46; Some models that use clinical outcome variables may be valid for comparing the results or outcomes of different units&#44; but not for establishing early prognoses in the first hours of patient admission or for defining groups amenable to therapeutic trials&#46;</p><p id="par0040" class="elsevierStylePara elsevierViewall">The study does have some limitations&#44; however&#46; The database is large and multicentric&#44; but covers a broad period of time &#40;10 years&#41; in which the therapeutic strategies and outcomes have experienced changes&#46; Although internal validation is made&#44; segmenting the database&#44; it is essential to assess the usefulness of the score on a prospective basis in order to corroborate the accuracy of the predictions&#46; On the other hand&#44; the score analyses mortality in the ICU&#44; and the APACHE II score is designed for application to in-hospital mortality&#44; while the SOFA score was not even designed with this purpose in mind&#46; Likewise&#44; we cannot rule out the possibility that the use of ML with a larger number of registered variables could have had greater predictive power&#46;</p><p id="par0045" class="elsevierStylePara elsevierViewall">The future of the analytical techniques based on ML will almost surely lie in the real-time counseling of clinical activity&#44; with immediate feedback and enrichment of the analytical processes&#46;<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a> Although we will witness this scenario&#44; it will be necessary to assess the power which such information will have in decision making&#44; from an ethical&#44; legal and deontological perspective&#46;<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> In addition&#44; it will be necessary to clarify the role of the clinician in the application and withdrawal of treatments when the ML system becomes fed by the decisions it induces&#46; These will be problems for the new generations&#44; and the near impossibility of understanding how the mathematics work will generate complex sensations among the professionals&#46; In the meantime&#44; we will have to continue relying on the development of accessible and valid techniques such as that presented in this number of the journal&#46;</p><p id="par0050" class="elsevierStylePara elsevierViewall">Intensive care medicine works locally with few patients&#44; and when attention must focus on concrete disease conditions&#44; the limitations are even greater&#46; Hence the importance of having potent multicentric registries to facilitate complex analyses and allow us to add knowledge in areas characterized by difficult management and with an impact upon the health of the population&#46; Given the current importance of the COVID-19 pandemic&#44; this represents a call for the development of collaborative data registries&#46;</p><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0005">Financial support</span><p id="par0055" class="elsevierStylePara elsevierViewall">The author declares that this study has received no financial support&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:2 [
        0 => array:2 [
          "identificador" => "sec0005"
          "titulo" => "Financial support"
        ]
        1 => array:1 [
          "titulo" => "References"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "NotaPie" => array:1 [
      0 => array:2 [
        "etiqueta" => "&#9734;"
        "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as&#58; Garc&#237;a Garmendia JL&#46; <span class="elsevierStyleItalic">Spanish influenza score</span>&#58; poder predictivo sin renunciar a lo cl&#225;sico&#46; Med Intensiva&#46; 2021&#59;45&#58;67&#8211;68&#46;</p>"
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0005"
          "bibliografiaReferencia" => array:10 [
            0 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Usefulness of machine learning in the development of an early mortality prediction score in severe influenza"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "Spanish Influenza Score &#40;SIS&#41;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2020.05.017"
                      "Revista" => array:2 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2020"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Interpretation of statistical results"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46;L&#46; Garc&#237;a Garmendia"
                            1 => "F&#46; Maroto Monserrat"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2017.12.013"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2018"
                        "volumen" => "42"
                        "paginaInicial" => "370"
                        "paginaFinal" => "379"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29477785"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0015"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence in health care&#58; bibliometric analysis"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "Y&#46; Guo"
                            1 => "Z&#46; Hao"
                            2 => "S&#46; Zhao"
                            3 => "J&#46; Gong"
                            4 => "F&#46; Yang"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.2196/18228"
                      "Revista" => array:5 [
                        "tituloSerie" => "J Med Internet Res&#46;"
                        "fecha" => "2020"
                        "volumen" => "22"
                        "paginaInicial" => "e18228"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32723713"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0020"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Statistics versus machine learning&#58; definitions are interesting &#40;but understanding&#44; methodology&#44; and reporting are more important&#41;"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "B&#46; Van Calster"
                            1 => "J&#46;Y&#46; Verbakel"
                            2 => "E&#46; Christodoulou"
                            3 => "E&#46;W&#46; Steyerberg"
                            4 => "G&#46;S&#46; Collins"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.jclinepi.2019.08.002"
                      "Revista" => array:6 [
                        "tituloSerie" => "J Clin Epidemiol&#46;"
                        "fecha" => "2019"
                        "volumen" => "116"
                        "paginaInicial" => "137"
                        "paginaFinal" => "138"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31425736"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Big data analysis and machine learning in intensive care units"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "A&#46; N&#250;&#241;ez Reiz"
                            1 => "M&#46;A&#46; Armengol de la Hoz"
                            2 => "M&#46; S&#225;nchez Garc&#237;a"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2018.10.007"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2019"
                        "volumen" => "43"
                        "paginaInicial" => "416"
                        "paginaFinal" => "426"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30591356"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Severe influenza&#58; overview in critically ill patients"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "C&#46; Sarda"
                            1 => "P&#46; Palma"
                            2 => "J&#46; Rello"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1097/mcc.0000000000000638"
                      "Revista" => array:6 [
                        "tituloSerie" => "Curr Opin Crit Care&#46;"
                        "fecha" => "2019"
                        "volumen" => "25"
                        "paginaInicial" => "449"
                        "paginaFinal" => "457"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31313681"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:6 [
                            0 => "E&#46; Christodoulou"
                            1 => "J&#46; Ma"
                            2 => "G&#46;S&#46; Collins"
                            3 => "E&#46;W&#46; Steyerberg"
                            4 => "J&#46;Y&#46; Verbakel"
                            5 => "B&#46; Van Calster"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.jclinepi.2019.02.004"
                      "Revista" => array:6 [
                        "tituloSerie" => "J Clin Epidemiol&#46;"
                        "fecha" => "2019"
                        "volumen" => "110"
                        "paginaInicial" => "12"
                        "paginaFinal" => "22"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30763612"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "8"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Using a machine learning approach to predict mortality in critically ill influenza patients&#58; a cross-sectional retrospective multicentre study in Taiwan"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "C&#46;A&#46; Hu"
                            1 => "C&#46;M&#46; Chen"
                            2 => "Y&#46;C&#46; Fang"
                            3 => "S&#46;J&#46; Liang"
                            4 => "H&#46;C&#46; Wang"
                            5 => "W&#46;F&#46; Fang"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1136/bmjopen-2019-033898"
                      "Revista" => array:5 [
                        "tituloSerie" => "BMJ Open&#46;"
                        "fecha" => "2020"
                        "volumen" => "10"
                        "paginaInicial" => "e033898"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32102816"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib0045"
              "etiqueta" => "9"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "G&#46; Feretzakis"
                            1 => "E&#46; Loupelis"
                            2 => "A&#46; Sakagianni"
                            3 => "D&#46; Kalles"
                            4 => "M&#46; Martsoukou"
                            5 => "M&#46; Lada"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.3390/antibiotics9020050"
                      "Revista" => array:4 [
                        "tituloSerie" => "Antibiotics &#40;Basel&#41;&#46;"
                        "fecha" => "2020"
                        "volumen" => "9"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33322196"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib0050"
              "etiqueta" => "10"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Big data analysis and machine learning in intensive care medicine&#58; identifying new ethical and legal challenges"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "G&#46; Lazcoz Moratinos"
                            1 => "I&#46; de Miguel Beriain"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2019.11.003"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2020"
                        "volumen" => "44"
                        "paginaInicial" => "319"
                        "paginaFinal" => "320"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31924445"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/21735727/0000004500000002/v1_202102260751/S2173572720302113/v1_202102260751/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "406"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Editorial"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/21735727/0000004500000002/v1_202102260751/S2173572720302113/v1_202102260751/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720302113?idApp=WMIE"
]
Share
Journal Information

Statistics

Follow this link to access the full text of the article

Editorial
Spanish influenza score: Predictive power without giving up the classic
Spanish influenza score: poder predictivo sin renunciar a lo clásico
J.L. García Garmendia
Unidad de Cuidados Intensivos, Servicio de Cuidados Críticos y Urgencias, Hospital San Juan de Dios del Aljarafe, Bormujos, Sevilla, Spain
Read
3085
Times
was read the article
1481
Total PDF
1604
Total HTML
Share statistics
 array:22 [
  "pii" => "S2173572720302113"
  "issn" => "21735727"
  "doi" => "10.1016/j.medine.2020.09.005"
  "estado" => "S300"
  "fechaPublicacion" => "2021-03-01"
  "aid" => "1586"
  "copyrightAnyo" => "2020"
  "documento" => "article"
  "crossmark" => 1
  "subdocumento" => "sco"
  "cita" => "Med Intensiva. 2021;45:67-8"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "Traduccion" => array:1 [
    "es" => array:19 [
      "pii" => "S0210569120303156"
      "issn" => "02105691"
      "doi" => "10.1016/j.medin.2020.09.001"
      "estado" => "S300"
      "fechaPublicacion" => "2021-03-01"
      "aid" => "1586"
      "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; y SEMICYUC"
      "documento" => "article"
      "crossmark" => 1
      "subdocumento" => "sco"
      "cita" => "Med Intensiva. 2021;45:67-8"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:1 [
        "total" => 0
      ]
      "es" => array:10 [
        "idiomaDefecto" => true
        "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>"
        "titulo" => "<span class="elsevierStyleItalic">Spanish influenza score&#58;</span> poder predictivo sin renunciar a lo cl&#225;sico"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "67"
            "paginaFinal" => "68"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "Spanish influenza score&#58; Predictive power without giving up the classic"
          ]
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "J&#46;L&#46; Garc&#237;a Garmendia"
            "autores" => array:1 [
              0 => array:2 [
                "nombre" => "J&#46;L&#46;"
                "apellidos" => "Garc&#237;a Garmendia"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "S2173572720302113"
          "doi" => "10.1016/j.medine.2020.09.005"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720302113?idApp=WMIE"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569120303156?idApp=WMIE"
      "url" => "/02105691/0000004500000002/v1_202102260805/S0210569120303156/v1_202102260805/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:19 [
    "pii" => "S2173572720302186"
    "issn" => "21735727"
    "doi" => "10.1016/j.medine.2020.05.009"
    "estado" => "S300"
    "fechaPublicacion" => "2021-03-01"
    "aid" => "1538"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
    "documento" => "article"
    "crossmark" => 1
    "subdocumento" => "fla"
    "cita" => "Med Intensiva. 2021;45:69-79"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:13 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Original</span>"
      "titulo" => "Spanish Influenza Score &#40;SIS&#41;&#58; Usefulness of machine learning in the development of an early mortality prediction score in severe influenza"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "en"
        1 => "es"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "69"
          "paginaFinal" => "79"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "<span class="elsevierStyleItalic">Spanish Influenza Score</span> &#40;SIS&#41;&#58; utilidad del <span class="elsevierStyleItalic">Machine Learning</span> en el desarrollo de una escala temprana de predicci&#243;n de mortalidad en la gripe grave"
        ]
      ]
      "contieneResumen" => array:2 [
        "en" => true
        "es" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:8 [
          "identificador" => "fig0015"
          "etiqueta" => "Figure 3"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr3.jpeg"
              "Alto" => 1115
              "Ancho" => 2096
              "Tamanyo" => 83821
            ]
          ]
          "detalles" => array:1 [
            0 => array:3 [
              "identificador" => "at0015"
              "detalle" => "Figure "
              "rol" => "short"
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Area under the ROC curve &#40;AUC ROC&#41; for SIS obtained in the validation group&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => " Spanish Working Group in Severe Influenza A &#40;GETGAG&#41; of the Sociedad Espa&#241;ola de Medicina Intensiva Cr&#237;tica y Unidades Coronarias &#40;SEMICYUC&#41;"
          "autores" => array:1 [
            0 => array:1 [
              "apellidos" => "Spanish Working Group in Severe Influenza A &#40;GETGAG&#41; of the Sociedad Espa&#241;ola de Medicina Intensiva Cr&#237;tica y Unidades Coronarias &#40;SEMICYUC&#41;"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "S0210569120301893"
        "doi" => "10.1016/j.medin.2020.05.017"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569120301893?idApp=WMIE"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720302186?idApp=WMIE"
    "url" => "/21735727/0000004500000002/v1_202102260751/S2173572720302186/v1_202102260751/en/main.assets"
  ]
  "en" => array:13 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>"
    "titulo" => "Spanish influenza score&#58; Predictive power without giving up the classic"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "67"
        "paginaFinal" => "68"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "J&#46;L&#46; Garc&#237;a Garmendia"
        "autores" => array:1 [
          0 => array:3 [
            "nombre" => "J&#46;L&#46;"
            "apellidos" => "Garc&#237;a Garmendia"
            "email" => array:1 [
              0 => "joseluis.garciagarmendia@sjd.es"
            ]
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "Unidad de Cuidados Intensivos&#44; Servicio de Cuidados Cr&#237;ticos y Urgencias&#44; Hospital San Juan de Dios del Aljarafe&#44; Bormujos&#44; Sevilla&#44; Spain"
            "identificador" => "aff0005"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "<span class="elsevierStyleItalic">Spanish influenza score</span>&#58; poder predictivo sin renunciar a lo cl&#225;sico"
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">The present number of Medicina Intensiva publishes a study on a Spanish severe influenza registry that develops a predictive score of mortality in the Intensive Care Unit &#40;ICU&#41;&#46;<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">In the 1980s&#44; intensive care became immersed in the understanding of reality and in the adoption of aids for decision making based on severity scores&#46; Despite its particularities&#44; the APACHE II remains valid for the assessment of severity in the critically ill&#46; These scores were based on the accumulation of a large body of representative data and made use of logistic regression &#40;LR&#41; and multivariate analytical techniques to generate predictive models&#44; with the use of beta-estimators to produce the individual scores&#46; In relation to investigators and clinicians&#44; the level of familiarity with the mathematical details needed to obtain the beta-estimators is sufficient&#44; and there is a reasonable correlation between understanding and the odds ratios &#40;ORs&#41; and their corresponding confidence intervals&#8212;forming a methodological construct that is both comprehensible and interpretable&#46;<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">On the other hand&#44; there has been an exponential growth in the use of big data analytical techniques through machine learning &#40;ML&#41;&#44; as can be seen from the number of literature references found in Medline&#46;<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> However&#44; one of the problems of ML is the difficulty of transferring the analyses to the clinical practice setting&#46;<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> In contrast to the conventional statistical analytical techniques&#44; the results of the published studies possess good mathematical indicators&#44; but clinicians see only limited practical applicability in them&#46;<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> This is due in part to the difficulty of understanding the mechanisms through which the results or outcomes are generated&#44; and of using a large number of variables simultaneously&#46; Such analyses are probably more concordant to the complex biological reality&#44; but reduce the possibilities for adequate handling on the part of the healthcare professionals within the clinical practice setting&#46;</p><p id="par0020" class="elsevierStylePara elsevierViewall">In this regard&#44; the article presented in this number of Medicina Intensiva pursues a double aim&#58; to incorporate ML techniques to a large database on severe influenza in the ICU&#44; and to generate a mortality risk score combining this approach with other classical techniques more amenable to incorporation to clinical practice&#46;</p><p id="par0025" class="elsevierStylePara elsevierViewall">Each year&#44; during the winter months&#44; severe influenza poses a challenge for ICUs all over the world&#46; While the influenza A &#40;H1N1&#41; outbreak in 2009 was one of the most important episodes&#44; there have been a number of seasons in which severe influenza has generated care problems in ICUs&#44; affecting also young individuals&#44; causing severe respiratory distress&#44; with prolonged admissions&#44; and a high mortality rate&#46;<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a></p><p id="par0030" class="elsevierStylePara elsevierViewall">Comparison of the results obtained with conventional techniques and those obtained through advanced random forest analysis &#40;ML&#41; reinforces the findings&#44; and appears to indicate that the new techniques will be able to add information to the classical analytical methods &#8211; though much of the substantial information can be gained from the latter&#46;<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> Nevertheless&#44; in order for the LR techniques to offer consistency&#44; we need quality registries of sufficient size&#44; as has been guaranteed in this study&#8212;in contrast to other recent publications in which an insufficient sample size strengthened the predictive capacity of ML over LR&#46;<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a></p><p id="par0035" class="elsevierStylePara elsevierViewall">The development of a mortality predictive score in critical patients with severe influenza may help in decision making referred to patient admission&#44; treatment &#40;prone decubitus&#44; extracorporeal oxygenation&#44; nitric oxide&#41; or even patient transfer for the application of advanced techniques in other centers&#46; Another utility of this score is the possibility of stratifying risk groups for guiding or orientating therapeutic trials&#44; as well as for the benchmarking of units&#46; The use of variables present at the time of admission in this study also must be viewed as an advantage&#44; since it would facilitate early counseling in decision making&#46; Some models that use clinical outcome variables may be valid for comparing the results or outcomes of different units&#44; but not for establishing early prognoses in the first hours of patient admission or for defining groups amenable to therapeutic trials&#46;</p><p id="par0040" class="elsevierStylePara elsevierViewall">The study does have some limitations&#44; however&#46; The database is large and multicentric&#44; but covers a broad period of time &#40;10 years&#41; in which the therapeutic strategies and outcomes have experienced changes&#46; Although internal validation is made&#44; segmenting the database&#44; it is essential to assess the usefulness of the score on a prospective basis in order to corroborate the accuracy of the predictions&#46; On the other hand&#44; the score analyses mortality in the ICU&#44; and the APACHE II score is designed for application to in-hospital mortality&#44; while the SOFA score was not even designed with this purpose in mind&#46; Likewise&#44; we cannot rule out the possibility that the use of ML with a larger number of registered variables could have had greater predictive power&#46;</p><p id="par0045" class="elsevierStylePara elsevierViewall">The future of the analytical techniques based on ML will almost surely lie in the real-time counseling of clinical activity&#44; with immediate feedback and enrichment of the analytical processes&#46;<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a> Although we will witness this scenario&#44; it will be necessary to assess the power which such information will have in decision making&#44; from an ethical&#44; legal and deontological perspective&#46;<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> In addition&#44; it will be necessary to clarify the role of the clinician in the application and withdrawal of treatments when the ML system becomes fed by the decisions it induces&#46; These will be problems for the new generations&#44; and the near impossibility of understanding how the mathematics work will generate complex sensations among the professionals&#46; In the meantime&#44; we will have to continue relying on the development of accessible and valid techniques such as that presented in this number of the journal&#46;</p><p id="par0050" class="elsevierStylePara elsevierViewall">Intensive care medicine works locally with few patients&#44; and when attention must focus on concrete disease conditions&#44; the limitations are even greater&#46; Hence the importance of having potent multicentric registries to facilitate complex analyses and allow us to add knowledge in areas characterized by difficult management and with an impact upon the health of the population&#46; Given the current importance of the COVID-19 pandemic&#44; this represents a call for the development of collaborative data registries&#46;</p><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0005">Financial support</span><p id="par0055" class="elsevierStylePara elsevierViewall">The author declares that this study has received no financial support&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:2 [
        0 => array:2 [
          "identificador" => "sec0005"
          "titulo" => "Financial support"
        ]
        1 => array:1 [
          "titulo" => "References"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "NotaPie" => array:1 [
      0 => array:2 [
        "etiqueta" => "&#9734;"
        "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as&#58; Garc&#237;a Garmendia JL&#46; <span class="elsevierStyleItalic">Spanish influenza score</span>&#58; poder predictivo sin renunciar a lo cl&#225;sico&#46; Med Intensiva&#46; 2021&#59;45&#58;67&#8211;68&#46;</p>"
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0005"
          "bibliografiaReferencia" => array:10 [
            0 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Usefulness of machine learning in the development of an early mortality prediction score in severe influenza"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "Spanish Influenza Score &#40;SIS&#41;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2020.05.017"
                      "Revista" => array:2 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2020"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Interpretation of statistical results"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "J&#46;L&#46; Garc&#237;a Garmendia"
                            1 => "F&#46; Maroto Monserrat"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2017.12.013"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2018"
                        "volumen" => "42"
                        "paginaInicial" => "370"
                        "paginaFinal" => "379"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29477785"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0015"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Artificial intelligence in health care&#58; bibliometric analysis"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "Y&#46; Guo"
                            1 => "Z&#46; Hao"
                            2 => "S&#46; Zhao"
                            3 => "J&#46; Gong"
                            4 => "F&#46; Yang"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.2196/18228"
                      "Revista" => array:5 [
                        "tituloSerie" => "J Med Internet Res&#46;"
                        "fecha" => "2020"
                        "volumen" => "22"
                        "paginaInicial" => "e18228"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32723713"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0020"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Statistics versus machine learning&#58; definitions are interesting &#40;but understanding&#44; methodology&#44; and reporting are more important&#41;"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "B&#46; Van Calster"
                            1 => "J&#46;Y&#46; Verbakel"
                            2 => "E&#46; Christodoulou"
                            3 => "E&#46;W&#46; Steyerberg"
                            4 => "G&#46;S&#46; Collins"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.jclinepi.2019.08.002"
                      "Revista" => array:6 [
                        "tituloSerie" => "J Clin Epidemiol&#46;"
                        "fecha" => "2019"
                        "volumen" => "116"
                        "paginaInicial" => "137"
                        "paginaFinal" => "138"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31425736"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Big data analysis and machine learning in intensive care units"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "A&#46; N&#250;&#241;ez Reiz"
                            1 => "M&#46;A&#46; Armengol de la Hoz"
                            2 => "M&#46; S&#225;nchez Garc&#237;a"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2018.10.007"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2019"
                        "volumen" => "43"
                        "paginaInicial" => "416"
                        "paginaFinal" => "426"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30591356"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Severe influenza&#58; overview in critically ill patients"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "C&#46; Sarda"
                            1 => "P&#46; Palma"
                            2 => "J&#46; Rello"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1097/mcc.0000000000000638"
                      "Revista" => array:6 [
                        "tituloSerie" => "Curr Opin Crit Care&#46;"
                        "fecha" => "2019"
                        "volumen" => "25"
                        "paginaInicial" => "449"
                        "paginaFinal" => "457"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31313681"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:6 [
                            0 => "E&#46; Christodoulou"
                            1 => "J&#46; Ma"
                            2 => "G&#46;S&#46; Collins"
                            3 => "E&#46;W&#46; Steyerberg"
                            4 => "J&#46;Y&#46; Verbakel"
                            5 => "B&#46; Van Calster"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.jclinepi.2019.02.004"
                      "Revista" => array:6 [
                        "tituloSerie" => "J Clin Epidemiol&#46;"
                        "fecha" => "2019"
                        "volumen" => "110"
                        "paginaInicial" => "12"
                        "paginaFinal" => "22"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30763612"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "8"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Using a machine learning approach to predict mortality in critically ill influenza patients&#58; a cross-sectional retrospective multicentre study in Taiwan"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "C&#46;A&#46; Hu"
                            1 => "C&#46;M&#46; Chen"
                            2 => "Y&#46;C&#46; Fang"
                            3 => "S&#46;J&#46; Liang"
                            4 => "H&#46;C&#46; Wang"
                            5 => "W&#46;F&#46; Fang"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1136/bmjopen-2019-033898"
                      "Revista" => array:5 [
                        "tituloSerie" => "BMJ Open&#46;"
                        "fecha" => "2020"
                        "volumen" => "10"
                        "paginaInicial" => "e033898"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32102816"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            8 => array:3 [
              "identificador" => "bib0045"
              "etiqueta" => "9"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "G&#46; Feretzakis"
                            1 => "E&#46; Loupelis"
                            2 => "A&#46; Sakagianni"
                            3 => "D&#46; Kalles"
                            4 => "M&#46; Martsoukou"
                            5 => "M&#46; Lada"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.3390/antibiotics9020050"
                      "Revista" => array:4 [
                        "tituloSerie" => "Antibiotics &#40;Basel&#41;&#46;"
                        "fecha" => "2020"
                        "volumen" => "9"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33322196"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            9 => array:3 [
              "identificador" => "bib0050"
              "etiqueta" => "10"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Big data analysis and machine learning in intensive care medicine&#58; identifying new ethical and legal challenges"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "G&#46; Lazcoz Moratinos"
                            1 => "I&#46; de Miguel Beriain"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2019.11.003"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2020"
                        "volumen" => "44"
                        "paginaInicial" => "319"
                        "paginaFinal" => "320"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31924445"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/21735727/0000004500000002/v1_202102260751/S2173572720302113/v1_202102260751/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "406"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Editorial"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/21735727/0000004500000002/v1_202102260751/S2173572720302113/v1_202102260751/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720302113?idApp=WMIE"
]
Article information
ISSN: 21735727
Original language: English
The statistics are updated each day
Year/Month Html Pdf Total
2024 November 4 7 11
2024 October 50 48 98
2024 September 58 23 81
2024 August 52 37 89
2024 July 54 37 91
2024 June 46 46 92
2024 May 39 32 71
2024 April 40 31 71
2024 March 41 20 61
2024 February 41 41 82
2024 January 45 39 84
2023 December 27 30 57
2023 November 61 35 96
2023 October 38 25 63
2023 September 28 43 71
2023 August 27 16 43
2023 July 27 27 54
2023 June 18 17 35
2023 May 36 40 76
2023 April 22 22 44
2023 March 33 31 64
2023 February 34 27 61
2023 January 25 18 43
2022 December 49 36 85
2022 November 49 30 79
2022 October 54 38 92
2022 September 38 37 75
2022 August 38 53 91
2022 July 34 46 80
2022 June 24 31 55
2022 May 36 33 69
2022 April 32 37 69
2022 March 64 44 108
2022 February 33 40 73
2022 January 29 47 76
2021 December 50 44 94
2021 November 33 33 66
2021 October 52 84 136
2021 September 35 38 73
2021 August 33 41 74
2021 July 36 30 66
2021 June 38 45 83
2021 March 1 2 3
Show all

Follow this link to access the full text of the article

Idiomas
Medicina Intensiva (English Edition)
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?