array:23 [
  "pii" => "S2173572723001352"
  "issn" => "21735727"
  "doi" => "10.1016/j.medine.2023.07.012"
  "estado" => "S300"
  "fechaPublicacion" => "2024-01-01"
  "aid" => "1910"
  "copyright" => "Elsevier España, S.L.U. and SEMICYUC"
  "copyrightAnyo" => "2023"
  "documento" => "simple-article"
  "crossmark" => 1
  "subdocumento" => "edi"
  "cita" => "Med Intensiva. 2024;48:1-2"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "Traduccion" => array:1 [
    "es" => array:19 [
      "pii" => "S0210569123002139"
      "issn" => "02105691"
      "doi" => "10.1016/j.medin.2023.07.001"
      "estado" => "S300"
      "fechaPublicacion" => "2024-01-01"
      "aid" => "1910"
      "copyright" => "Elsevier España, S.L.U. y SEMICYUC"
      "documento" => "simple-article"
      "crossmark" => 1
      "subdocumento" => "edi"
      "cita" => "Med Intensiva. 2024;48:1-2"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:1 [
        "total" => 0
      ]
      "es" => array:10 [
        "idiomaDefecto" => true
        "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>"
        "titulo" => "An&#225;lisis avanzado de datos y medicina intensiva"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "1"
            "paginaFinal" => "2"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "Advanced data analysis and intensive care medicine"
          ]
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "Federico Gordo Vidal, Natalia Gordo Herrera"
            "autores" => array:2 [
              0 => array:2 [
                "nombre" => "Federico"
                "apellidos" => "Gordo Vidal"
              ]
              1 => array:2 [
                "nombre" => "Natalia"
                "apellidos" => "Gordo Herrera"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "S2173572723001352"
          "doi" => "10.1016/j.medine.2023.07.012"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572723001352?idApp=WMIE"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569123002139?idApp=WMIE"
      "url" => "/02105691/0000004800000001/v1_202401020431/S0210569123002139/v1_202401020431/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:19 [
    "pii" => "S2173572723001303"
    "issn" => "21735727"
    "doi" => "10.1016/j.medine.2023.07.009"
    "estado" => "S300"
    "fechaPublicacion" => "2024-01-01"
    "aid" => "1907"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
    "documento" => "article"
    "crossmark" => 1
    "subdocumento" => "fla"
    "cita" => "Med Intensiva. 2024;48:3-13"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:13 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>"
      "titulo" => "Predictors of mechanical ventilation and mortality in critically ill patients with COVID-19 pneumonia"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "tieneResumen" => array:2 [
        0 => "en"
        1 => "es"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "3"
          "paginaFinal" => "13"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Predictores de ventilaci&#243;n mec&#225;nica y mortalidad en pacientes cr&#237;ticos con neumon&#237;a por COVID-19"
        ]
      ]
      "contieneResumen" => array:2 [
        "en" => true
        "es" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:8 [
          "identificador" => "fig0015"
          "etiqueta" => "Figure 3"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr3.jpeg"
              "Alto" => 1594
              "Ancho" => 3425
              "Tamanyo" => 463599
            ]
          ]
          "detalles" => array:1 [
            0 => array:3 [
              "identificador" => "at0085"
              "detalle" => "Figure "
              "rol" => "short"
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">ICU Mortality Tree Predictors&#46; The predictors appear in different branches attending to their significance in the predictive model&#46; Values in bold letters represent the registries per branch&#46; Values in red bold letters represent the percentage of registries with positive outcome&#46; The variable named as &#8220;DAYS&#95;SIMPTONS&#95;ADMISION&#8221; is related with the number of days from first symptoms to ICU admission&#46; The variable &#8220;linf&#95;total&#8221;&#44; is related to lymphocyte count per mm3&#46; The variable named as &#8220;dosis&#95;equiv&#95;mpred&#95;5d&#8221; is related with the corticosteroid dose&#44; during the first five days of admission &#40;mg of equivalent methylprednisolone dose&#41;&#46; The variable named as &#8220;bbTot&#8221; is related with the total levels of bilirubin in blood&#46; The variable names as &#8220;ldh&#8221; is related to the lactate dehydrogenase serum level&#46; The variable DAYS&#95;UNTIL&#95;O2 is related to the number of days until the patient requires O2&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "Sergio Mu&#241;oz Lezcano, Miguel &#193;ngel Armengol de la Hoz, Alberto Corbi, Fernando L&#243;pez, Miguel S&#225;nchez Garc&#237;a, Antonio Nu&#241;ez Reiz, Tom&#225;s Fari&#241;a Gonz&#225;lez, Viktor Yordanov Zlatkov"
          "autores" => array:8 [
            0 => array:2 [
              "nombre" => "Sergio"
              "apellidos" => "Mu&#241;oz Lezcano"
            ]
            1 => array:2 [
              "nombre" => "Miguel &#193;ngel"
              "apellidos" => "Armengol de la Hoz"
            ]
            2 => array:2 [
              "nombre" => "Alberto"
              "apellidos" => "Corbi"
            ]
            3 => array:2 [
              "nombre" => "Fernando"
              "apellidos" => "L&#243;pez"
            ]
            4 => array:2 [
              "nombre" => "Miguel S&#225;nchez"
              "apellidos" => "Garc&#237;a"
            ]
            5 => array:2 [
              "nombre" => "Antonio Nu&#241;ez"
              "apellidos" => "Reiz"
            ]
            6 => array:2 [
              "nombre" => "Tom&#225;s Fari&#241;a"
              "apellidos" => "Gonz&#225;lez"
            ]
            7 => array:2 [
              "nombre" => "Viktor Yordanov"
              "apellidos" => "Zlatkov"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "en" => array:9 [
        "pii" => "S0210569123002085"
        "doi" => "10.1016/j.medin.2023.06.012"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "en"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569123002085?idApp=WMIE"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572723001303?idApp=WMIE"
    "url" => "/21735727/0000004800000001/v1_202401020427/S2173572723001303/v1_202401020427/en/main.assets"
  ]
  "en" => array:11 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>"
    "titulo" => "Advanced data analysis and intensive care medicine"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "1"
        "paginaFinal" => "2"
      ]
    ]
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "Federico Gordo Vidal, Natalia Gordo Herrera"
        "autores" => array:2 [
          0 => array:4 [
            "nombre" => "Federico"
            "apellidos" => "Gordo Vidal"
            "email" => array:1 [
              0 => "fnatalio.gordo@salud.madrid.org"
            ]
            "referencia" => array:3 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
              2 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0005"
              ]
            ]
          ]
          1 => array:3 [
            "nombre" => "Natalia"
            "apellidos" => "Gordo Herrera"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "aff0015"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:3 [
          0 => array:3 [
            "entidad" => "Servicio de Medicina Intensiva&#44; Hospital Universitario del Henares&#44; Coslada&#44; Madrid&#44; Spain"
            "etiqueta" => "a"
            "identificador" => "aff0005"
          ]
          1 => array:3 [
            "entidad" => "Grupo de Investigaci&#243;n en Patolog&#237;a Cr&#237;tica&#44; Grado de Medicina&#44; Universidad Francisco de Vitoria&#44; Pozuelo de Alarc&#243;n&#44; Madrid&#44; Spain"
            "etiqueta" => "b"
            "identificador" => "aff0010"
          ]
          2 => array:3 [
            "entidad" => "Escuela Polit&#233;cnica Superior&#44; Universidad Francisco de Vitoria&#44; Pozuelo de Alarc&#243;n&#44; Madrid&#44; Spain"
            "etiqueta" => "c"
            "identificador" => "aff0015"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Corresponding author&#46;"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "Analisis avanzado de datos y medicina intensiva"
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">In this issue of our journal&#44; Mu&#241;oz Lezcano et al&#46;<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> present to us the results of an analysis of a database generated by a real-time clinical information system&#46; The overall objective of this project is to identify the most significant risk factors in patients requiring non-invasive mechanical ventilation&#46; Additionally&#44; they apply models to study or determine the prognosis of patients with COVID-19 using machine learning techniques&#46;</p><p id="par0010" class="elsevierStylePara elsevierViewall">The authors not only highlight the results obtained&#44; but also emphasize the utility of Artificial Intelligence &#40;A&#46;I&#46;&#41; techniques applied to fields such as medicine&#46; Data analysis applied to critically ill patients can help&#44; even in real-time&#44; to obtain results to understand the specific characteristics of different patient groups&#44; thus improving and personalizing care and treatment&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">Several studies applying these techniques have recently been published in <span class="elsevierStyleItalic">Medicina Intensiva</span>&#46;<a class="elsevierStyleCrossRefs" href="#bib0010"><span class="elsevierStyleSup">2&#8211;4</span></a> Thanks to the technological advancements made&#44; and the growing amount of data generated in clinical settings&#44; the future of data analysis in critical care is promising and will likely improve the quality and outcomes of health care&#46; Machine learning algorithms and A&#46;I&#46; are being used to analyze large volumes of clinical data&#44; such as medical images&#44; electronic health records&#44; and laboratory test results&#46; These algorithms can identify subtle patterns indicative of the presence of a disease or the development of complications in critically ill patients&#46; This anticipation could make a difference in patient survival and recovery&#46; Continuous and real-time monitoring is another area where data analysis has been improving&#46; Medical devices are or should be more and more connected&#44; allowing for immediate and secure data collection and transmission&#46;</p><p id="par0020" class="elsevierStylePara elsevierViewall">Considering all the advantages that technology has to offer to the field of medicine&#44; we should envision and facilitate an approach to data collection and storage that should not compromise patient privacy while guaranteeing data quality and trustworthiness&#46; This challenge is not easy and requires&#44; at least&#44; 3 critical steps&#58;<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">1&#41;</span><p id="par0025" class="elsevierStylePara elsevierViewall">Creation of reliable&#44; collaborative&#44; and accessible databases&#46;</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">2&#41;</span><p id="par0030" class="elsevierStylePara elsevierViewall">Integration of truly interconnected teams and systems that speak the same language and are capable of transferring information in real-time&#46;</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel">3&#41;</span><p id="par0035" class="elsevierStylePara elsevierViewall">Addition of professional profiles enabling interdisciplinary work with A&#46;I&#46; systems and data&#46;</p></li></ul></p><p id="par0040" class="elsevierStylePara elsevierViewall">Although the technological world&#44; including Artificial Intelligence&#44; moves fast&#44; there is still much progress to be made in the application of these resources in fields such as medicine&#44; particularly in critical cases&#46; If we want to continue bringing these techniques to the medical field&#44; we should reconsider workforce planning and the addition of new professional profiles &#40;or signing of collaboration agreements&#41; to allow for adequate progress in this type of research to unleash its full potential&#46;</p></span>"
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0005"
          "bibliografiaReferencia" => array:4 [
            0 => array:3 [
              "identificador" => "bib0005"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Predictors of mechanical ventilation and mortality in critically ill patients with COVID-19 pneumonia"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "S&#46; Mu&#241;oz Lezcano"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2023.06.012"
                      "Revista" => array:2 [
                        "tituloSerie" => "Med Intensiva"
                        "fecha" => "2023"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0010"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Enhancing sepsis management through machine learning techniques&#58; a review"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:6 [
                            0 => "N&#46; Ocampo-Quintero"
                            1 => "P&#46; Vidal-Cort&#233;s"
                            2 => "L&#46; del Rio Carbajo"
                            3 => "F&#46; Fern&#225;ndez-Riverola"
                            4 => "M&#46; Reboiro-Jato"
                            5 => "M&#46; Gonz&#225;lez-Pe&#241;a"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2020.04.003"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2022"
                        "volumen" => "46"
                        "paginaInicial" => "140"
                        "paginaFinal" => "156"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/35221003"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0015"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Early mortality risk stratification after SARS-CoV-2 infection"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "D&#46;J&#46; Lundon"
                            1 => "B&#46;D&#46; Kelly"
                            2 => "S&#46; Nair"
                            3 => "D&#46;M&#46; Bolton"
                            4 => "N&#46; Kyprianou"
                            5 => "P&#46; Wiklund"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2020.06.011"
                      "Revista" => array:6 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2021"
                        "volumen" => "45"
                        "paginaInicial" => "e40"
                        "paginaFinal" => "2"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34717886"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0020"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Spanish Influenza Score &#40;SIS&#41;&#58; usefulness of machine learning in the development of an early mortality prediction score in severe influenza"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "Grupo de Trabajo Gripe A Grave &#40;GETGAG&#41; de la Sociedad Espa&#241;ola de Medicina Intensiva Cr&#237;tica y Unidades Coronarias &#40;SEMICYUC&#41;"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2020.05.017"
                      "Revista" => array:8 [
                        "tituloSerie" => "Med Intensiva&#46;"
                        "fecha" => "2021"
                        "volumen" => "45"
                        "numero" => "2"
                        "paginaInicial" => "69"
                        "paginaFinal" => "79"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32798052"
                            "web" => "Medline"
                          ]
                        ]
                        "itemHostRev" => array:3 [
                          "pii" => "S0967586818304478"
                          "estado" => "S300"
                          "issn" => "09675868"
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/21735727/0000004800000001/v1_202401020427/S2173572723001352/v1_202401020427/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "406"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Editorial"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/21735727/0000004800000001/v1_202401020427/S2173572723001352/v1_202401020427/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572723001352?idApp=WMIE"
]
Share
Journal Information
Vol. 48. Issue 1.
Pages 1-2 (January 2024)
Vol. 48. Issue 1.
Pages 1-2 (January 2024)
Editorial
Full text access
Advanced data analysis and intensive care medicine
Analisis avanzado de datos y medicina intensiva
Visits
812
Federico Gordo Vidala,b,
Corresponding author
fnatalio.gordo@salud.madrid.org

Corresponding author.
, Natalia Gordo Herrerac
a Servicio de Medicina Intensiva, Hospital Universitario del Henares, Coslada, Madrid, Spain
b Grupo de Investigación en Patología Crítica, Grado de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
c Escuela Politécnica Superior, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
This item has received
Article information
Full Text
Bibliography
Download PDF
Statistics
Full Text

In this issue of our journal, Muñoz Lezcano et al.1 present to us the results of an analysis of a database generated by a real-time clinical information system. The overall objective of this project is to identify the most significant risk factors in patients requiring non-invasive mechanical ventilation. Additionally, they apply models to study or determine the prognosis of patients with COVID-19 using machine learning techniques.

The authors not only highlight the results obtained, but also emphasize the utility of Artificial Intelligence (A.I.) techniques applied to fields such as medicine. Data analysis applied to critically ill patients can help, even in real-time, to obtain results to understand the specific characteristics of different patient groups, thus improving and personalizing care and treatment.

Several studies applying these techniques have recently been published in Medicina Intensiva.2–4 Thanks to the technological advancements made, and the growing amount of data generated in clinical settings, the future of data analysis in critical care is promising and will likely improve the quality and outcomes of health care. Machine learning algorithms and A.I. are being used to analyze large volumes of clinical data, such as medical images, electronic health records, and laboratory test results. These algorithms can identify subtle patterns indicative of the presence of a disease or the development of complications in critically ill patients. This anticipation could make a difference in patient survival and recovery. Continuous and real-time monitoring is another area where data analysis has been improving. Medical devices are or should be more and more connected, allowing for immediate and secure data collection and transmission.

Considering all the advantages that technology has to offer to the field of medicine, we should envision and facilitate an approach to data collection and storage that should not compromise patient privacy while guaranteeing data quality and trustworthiness. This challenge is not easy and requires, at least, 3 critical steps:

  • 1)

    Creation of reliable, collaborative, and accessible databases.

  • 2)

    Integration of truly interconnected teams and systems that speak the same language and are capable of transferring information in real-time.

  • 3)

    Addition of professional profiles enabling interdisciplinary work with A.I. systems and data.

Although the technological world, including Artificial Intelligence, moves fast, there is still much progress to be made in the application of these resources in fields such as medicine, particularly in critical cases. If we want to continue bringing these techniques to the medical field, we should reconsider workforce planning and the addition of new professional profiles (or signing of collaboration agreements) to allow for adequate progress in this type of research to unleash its full potential.

References
[1]
S. Muñoz Lezcano.
Predictors of mechanical ventilation and mortality in critically ill patients with COVID-19 pneumonia.
[2]
N. Ocampo-Quintero, P. Vidal-Cortés, L. del Rio Carbajo, F. Fernández-Riverola, M. Reboiro-Jato, M. González-Peña.
Enhancing sepsis management through machine learning techniques: a review.
Med Intensiva., 46 (2022), pp. 140-156
[3]
D.J. Lundon, B.D. Kelly, S. Nair, D.M. Bolton, N. Kyprianou, P. Wiklund, et al.
Early mortality risk stratification after SARS-CoV-2 infection.
Med Intensiva., 45 (2021), pp. e40-2
[4]
Grupo de Trabajo Gripe A Grave (GETGAG) de la Sociedad Española de Medicina Intensiva Crítica y Unidades Coronarias (SEMICYUC).
Spanish Influenza Score (SIS): usefulness of machine learning in the development of an early mortality prediction score in severe influenza.
Med Intensiva., 45 (2021), pp. 69-79
Copyright © 2023. Elsevier España, S.L.U. and SEMICYUC
Download PDF
Idiomas
Medicina Intensiva (English Edition)
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?