was read the article
array:23 [ "pii" => "S2173572714000216" "issn" => "21735727" "doi" => "10.1016/j.medine.2014.04.001" "estado" => "S300" "fechaPublicacion" => "2014-05-01" "aid" => "643" "copyright" => "Elsevier España, S.L. and SEMICYUC" "copyrightAnyo" => "2013" "documento" => "article" "crossmark" => 0 "subdocumento" => "sco" "cita" => "Med Intensiva. 2014;38:249-60" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 11885 "formatos" => array:3 [ "EPUB" => 187 "HTML" => 8545 "PDF" => 3153 ] ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0210569113002507" "issn" => "02105691" "doi" => "10.1016/j.medin.2013.10.008" "estado" => "S300" "fechaPublicacion" => "2014-05-01" "aid" => "643" "copyright" => "Elsevier España, S.L. and SEMICYUC" "documento" => "article" "crossmark" => 0 "subdocumento" => "sco" "cita" => "Med Intensiva. 2014;38:249-60" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 77262 "formatos" => array:3 [ "EPUB" => 310 "HTML" => 63256 "PDF" => 13696 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">PUESTA AL DÍA EN MEDICINA INTENSIVA: VENTILACIÓN MECÁNICA</span>" "titulo" => "Nuevos modos de ventilación asistida" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "249" "paginaFinal" => "260" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "New modes of assisted mechanical ventilation" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figura 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1948 "Ancho" => 2184 "Tamanyo" => 196903 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Principio de funcionamiento de ASV. Antes del comienzo el clínico introduce los datos de peso del paciente, porcentaje de volumen minuto (estimado a priori en función del paciente y la patología), FiO<span class="elsevierStyleInf">2</span>, PEEP y el límite de presión inspiratoria máxima (Pmáx). Mediante el análisis de la curva flujo-volumen se determina la constante de tiempo espiratorio y mediante un ajuste de mínimos cuadrados se calcula la mecánica respiratoria y la presencia de PEEP intrínseca. El algoritmo de control de asa cerrada de la ASV ajusta la presión inspiratoria de acuerdo a la ecuación iterativa derivada de Otis y Mead. La combinación del volumen minuto y frecuencia objetivos son ajustados de forma continua para alcanzar y mantener al paciente sobre la curva isovolumen minuto (IsoVM). Adaptada de referencia Tassaux et al.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">54</span></a>.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "F. Suarez-Sipmann" "autores" => array:2 [ 0 => array:2 [ "nombre" => "F." "apellidos" => "Suarez-Sipmann" ] 1 => array:1 [ "colaborador" => "por el Grupo de Trabajo de Insuficiencia Respiratoria Aguda de la SEMICYUC" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173572714000216" "doi" => "10.1016/j.medine.2014.04.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572714000216?idApp=WMIE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569113002507?idApp=WMIE" "url" => "/02105691/0000003800000004/v1_201404270108/S0210569113002507/v1_201404270108/es/main.assets" ] ] "itemAnterior" => array:19 [ "pii" => "S217357271400023X" "issn" => "21735727" "doi" => "10.1016/j.medine.2013.12.001" "estado" => "S300" "fechaPublicacion" => "2014-05-01" "aid" => "662" "copyright" => "Elsevier España, S.L. and SEMICYUC" "documento" => "article" "crossmark" => 0 "subdocumento" => "fla" "cita" => "Med Intensiva. 2014;38:226-36" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 14971 "formatos" => array:3 [ "EPUB" => 235 "HTML" => 11231 "PDF" => 3505 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Special article</span>" "titulo" => "Guidelines for the prevention of ventilator-associated pneumonia and their implementation. The Spanish “Zero-VAP” bundle" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "226" "paginaFinal" => "236" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Paquete de medidas para la prevención de la neumonía asociada a la ventilación mecánica y su aplicación en las UVI españolas. El Proyecto «Neumonía Zero»" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 3500 "Ancho" => 2691 "Tamanyo" => 373584 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Organizational scheme of the “Zero VAP” Project. (SEMICYUC: Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias. SEEIUC: Sociedad Española de Enfermería Intensiva y Unidades Coronarias).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "F. Álvarez Lerma, M. Sánchez García, L. Lorente, F. Gordo, J.M. Añón, J. Álvarez, M. Palomar, R. García, S. Arias, M. Vázquez-Calatayud, R. Jam" "autores" => array:11 [ 0 => array:2 [ "nombre" => "F." "apellidos" => "Álvarez Lerma" ] 1 => array:2 [ "nombre" => "M." "apellidos" => "Sánchez García" ] 2 => array:2 [ "nombre" => "L." "apellidos" => "Lorente" ] 3 => array:2 [ "nombre" => "F." "apellidos" => "Gordo" ] 4 => array:2 [ "nombre" => "J.M." "apellidos" => "Añón" ] 5 => array:2 [ "nombre" => "J." "apellidos" => "Álvarez" ] 6 => array:2 [ "nombre" => "M." "apellidos" => "Palomar" ] 7 => array:2 [ "nombre" => "R." "apellidos" => "García" ] 8 => array:2 [ "nombre" => "S." "apellidos" => "Arias" ] 9 => array:2 [ "nombre" => "M." "apellidos" => "Vázquez-Calatayud" ] 10 => array:2 [ "nombre" => "R." "apellidos" => "Jam" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S0210569114000126" "doi" => "10.1016/j.medin.2013.12.007" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569114000126?idApp=WMIE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S217357271400023X?idApp=WMIE" "url" => "/21735727/0000003800000004/v1_201405150137/S217357271400023X/v1_201405150137/en/main.assets" ] "en" => array:18 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Update in Intensive Care Medicine: Mechanical ventilation</span>" "titulo" => "New modes of assisted mechanical ventilation" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "249" "paginaFinal" => "260" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "F. Suarez-Sipmann" "autores" => array:2 [ 0 => array:4 [ "nombre" => "F." "apellidos" => "Suarez-Sipmann" "email" => array:1 [ 0 => "fsuarez.sipmann@surgsci.uu.se" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">¿</span>" "identificador" => "cor0005" ] ] ] 1 => array:1 [ "colaborador" => "in representation of the Acute Respiratory Failure Working Group of the SEMICYUC" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Department of Intensive Care Medicine, Uppsala University Hospital, Hedenstierna Laboratory, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Nuevos modos de ventilación asistida" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2374 "Ancho" => 3249 "Tamanyo" => 364993 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Principles of patient–ventilator interaction. Assisted ventilation has the difficult task of harmonizing the operation of two complex systems, i.e., patient and ventilator–each with its own control center and ventilatory pump. The respiratory control system (RCS) is complex, and is composed of an automatic system and a voluntary system. The afferents transmit the stimuli from the sensors (central and peripheral chemoreceptors, stretch receptors and muscle receptors) to the control system, regulating the neural respiratory impulse. The automatic control system emits the efferents (motor neurons) that activate and regulate the muscle pump. The voluntary system in turn can modulate the activity of the automatic system or directly activate the muscle pump.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Mechanical ventilation (MV) is a life support measure that is used when the respiratory system of the patient is unable to meet the metabolic demands of the body. The indications of MV range from disease processes that affect gas exchange to simple “switching off” of the respiratory control system during anesthesia. Mechanical ventilation is usually started with a controlled ventilation phase during which the clinician takes full control of the ventilatory process, ensuring a minimum level of gas exchange and adequate muscle rest. Once the underlying disease condition has been corrected, a transition phase is started in which the patient gradually begins to participate in the ventilatory process. In this phase, which is referred to as assisted ventilation, the aim is to provide ventilatory support synchronized in time and magnitude with the inspiratory effort of the patient as the level of mechanical ventilation is gradually reduced.</p><p id="par0010" class="elsevierStylePara elsevierViewall">The greatest advances in MV correspond to the development of new assisted ventilation modes. Impulsed by important technical innovations, these new modes offer theoretical advantages with respect to the traditional assisted ventilation modes such as assisted-controlled ventilation or pressure support ventilation. However, their slow introduction to clinical practice and the fact that their superiority in terms of clinical outcomes has not yet been firmly established have caused the traditional modes to remain the most widely used techniques.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">The present review describes new assisted ventilation modes that have been grouped as follows: (1) modes that adapt to the instantaneous inspiratory effort of the patient, such as proportional assist ventilation (PAV) and neurally adjusted ventilatory assist (NAVA); (2) automated modes that can be adapted to the patient demands, such as adaptive support ventilation (ASV) and the NeoGanesh system marketed as SmartCare™; and (3) modes that introduce biological variability in the ventilatory pattern, such as variable pressure support ventilation (V-PSV) or “noisy ventilation”.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">The challenges of assisted ventilation</span><p id="par0020" class="elsevierStylePara elsevierViewall">Assisted ventilation has the difficult task of harmonizing the operation of two complex systems, i.e., patient and ventilator–each with its own control center and ventilatory pump (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). The respiratory control system (RCS) is composed of an automatic system and a voluntary system. The former integrates information from neurological and chemical peripheral afferents at brainstem level, while the voluntary or behavioral system in turn is located in supramedullary and cortical structures. In healthy individuals, the respiratory stimulus has three main origins: (1) chemical, mediated by changes in PaO<span class="elsevierStyleInf">2</span>, PCO<span class="elsevierStyleInf">2</span> and pH; (2) metabolic, mediated by less well known mechanisms; and (3) a conscious origin that disappears during sleep phases.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> In effect, during sleep, the respiratory pattern is almost exclusively conditioned by chemical stimuli, which for example explains the apneas seen in response to minor changes in PCO<span class="elsevierStyleInf">2</span> in sedated patients.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> During the waking state, the voluntary control system is activated and influences the respiratory patterns in a variable and often unpredictable manner. As a result, patients subjected to assisted ventilation can develop complex respiratory patterns that affect interaction with the ventilator, thereby complicating mechanical assist.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0025" class="elsevierStylePara elsevierViewall">In order to activate the muscle pump, the automatic control system transmits the respiratory impulses along the efferents (motor neurons). The voluntary system not only interacts directly with the automatic system, but also has efferents that can directly activate the muscle pump without passing through the automatic control filter<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). The difficulty of harmonizing the respiratory cycle generated by this complex RCS with the mechanical cycle of the ventilator is reflected by the fact that both are in manifest asynchrony in approximately 25% of all patients.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> An element that contributes to this situation is the fact that the traditional ventilation modes are rigid–delivering prefixed volumes or pressures without taking into account the frequent changes in patient demands or the changes between the sleeping and waking states. Moreover, in the case of assisted-controlled ventilation, the clinician assigns a fixed inspiratory time that rarely coincides with the physiologically variable time set by the respiratory control center (neural time).</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Assist modes adapted to the instantaneous inspiratory effort of the patient</span><p id="par0030" class="elsevierStylePara elsevierViewall">These modes are represented by PAV and NAVA, and have opened a new range of possibilities for assisted ventilation. Based on solid physiological principles, these techniques offer a series of theoretical advantages that make them particularly attractive for improving patient–ventilator synchrony. This is because in these modes the RCS of the patient takes control of the respirator and is free to determine its own respiratory pattern. Consequently, none of the entities such as volume, pressure and flow are pre-established; rather the ventilator simply assists the pattern chosen by the patient. In both of the mentioned modes the ventilator functions as an additional muscle, proportionally assisting the instantaneous efforts of the patient over the entire inspiratory phase. In addition, and in contrast to the other modes, ventilatory assist ceases at the same time as patient effort. This affords improved harmony between the mechanical and neural ventilatory times.</p><p id="par0035" class="elsevierStylePara elsevierViewall">Upon taking control of the RCS, the ventilatory pattern recovers the characteristic variability of the natural respiratory pattern. Furthermore, under conditions in which the RCS is functionally intact, the afferents from the chemical and neural sensors modulate the intensity and characteristics of the respiratory impulse. This implies that both PAV and NAVA theoretically pose a lesser risk of under- or over-assistance, which often constitutes a cause of asynchrony with the traditional modes.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> Both assist modes require sufficient patient alertness and functional integrity of the RCS, which is affected by sedation.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Proportional assist ventilation</span><p id="par0040" class="elsevierStylePara elsevierViewall">Proportional assist ventilation (PAV) was introduced in the early nineties,<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> and represents a synchronized assist ventilation mode in which the ventilator provides pressure assistance proportional to the instantaneous effort of the patient.</p><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Principles of proportional assist ventilation</span><p id="par0045" class="elsevierStylePara elsevierViewall">In the PAV system the ventilator detects the inspiratory effort of the patient by precisely measuring the flow and volume leaving the ventilator toward the patient. Both parameters are conditioned by the inspiratory decrease in alveolar pressure which the patient generates through muscle contraction. The flow and volume are amplified by respective adjustable gain controls, and the sum of both constitutes the control signal that generates the pressure response of the ventilator. The latter reacts with the rapid delivery of flow in response to this control signal (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0050" class="elsevierStylePara elsevierViewall">The proportionality of the assistance is determined by the motion equation of the respiratory system. According to this equation, the total pressure that must be applied to insufflate the lung must overcome the resistive pressure (flow<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>resistance) and the elastic retraction pressure (volume<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>elastance) of the respiratory system:<elsevierMultimedia ident="eq0005"></elsevierMultimedia></p><p id="par0055" class="elsevierStylePara elsevierViewall">During assisted ventilation, the total pressure is the sum of the pressure generated by muscle contraction of the patient (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">mus</span>) and the pressure generated by the ventilator (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">vent</span>).<elsevierMultimedia ident="eq0010"></elsevierMultimedia></p><p id="par0060" class="elsevierStylePara elsevierViewall">The levels of flow and volume assistance are adjusted independently by the user. This requires an estimation of the passive mechanical characteristics, resistance and elastance, at the start of adjustment and on an intermittent basis. Once these are known, the pressure assist afforded by the ventilator is determined by the sum of the flow and volume assistance:<elsevierMultimedia ident="eq0015"></elsevierMultimedia></p><p id="par0065" class="elsevierStylePara elsevierViewall">Because of the changing nature of respiratory mechanics, the system requires frequent measurement of elastance and resistance. There is consequently a risk of excessive or insufficient assistance in cases of estimation error or a lack of concordance between the estimated and the actual values. In the event of over-estimation, compensation is excessive, and the expiratory cycle may be delayed, prolonging assistance beyond the cessation of inspiratory effort on the part of the patient–this being known as the “run-away” phenomenon.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,8</span></a></p><p id="par0070" class="elsevierStylePara elsevierViewall">A simplified and improved form has recently been introduced, called proportional assist ventilation with load-adjustable gain factors, or PAV+. This mode offers two essential improvements: (1) the noninvasive and semi-continuous measurement of respiratory mechanics, allowing automatic closed-loop adjustment of the assist level. This measurement is made by introducing brief pauses (300<span class="elsevierStyleHsp" style=""></span>ms) at the end of inspiration every 8–15 respirations to estimate resistance<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a> and elastance<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a>; and (2) the automatic adjustment of a single level of flow and volume assistance that becomes a constant fraction of the measured values of resistance and elastance.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Functioning of proportional assist ventilation with load-adjustable gain factors (PAV+)</span><p id="par0075" class="elsevierStylePara elsevierViewall">During ventilation in PAV+ mode, we simply need to adjust the percentage by which the ventilator must assist patient effort. Accordingly, an assist level of 70% means that the ventilator will contribute 70% to the total pressure reached, leaving the remaining 30% to the patient. The proportionality is simplified as follows:<elsevierMultimedia ident="eq0020"></elsevierMultimedia></p><p id="par0080" class="elsevierStylePara elsevierViewall">For an assist level of 70%, the proportionality is 3; in other words, the system multiplies instantaneous pressure assistance by a factor of 3.</p><p id="par0085" class="elsevierStylePara elsevierViewall">After activating the inspiratory trigger through pressure or flow, the inspiratory pressure progresses with the established proportionality, following a profile identical to that of <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">mus</span>. The result is gradual pressurization, reaching the maximum pressure only at the end of inspiration. In the moment in which the effort of the patient begins to decrease, the delivery of flow also decreases–expiratory cycling therefore generally coinciding with the cessation of patient effort.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">PAV and PAV+: clinical characteristics</span><p id="par0090" class="elsevierStylePara elsevierViewall">Many clinical studies have compared the physiological advantages of PAV versus conventional assist modes. Marantz et al.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> characterized the physiological response to PAV among patients dependent upon mechanical ventilation. They found that during PAV, in the absence of limitations imposed by respiratory mechanics, the RCS of the patient determines the tidal volume (<span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span>) and the frequency in response to variable assist levels. The patients tend to lower <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and to increase the frequency in order to maintain the chosen minute volume. This results in a reduction of the inspiratory pressures.</p><p id="par0095" class="elsevierStylePara elsevierViewall">With respect to pressure support ventilation (RSV), PAV has shown similar muscle discharge<a class="elsevierStyleCrossRefs" href="#bib0055"><span class="elsevierStyleSup">11–14</span></a> and better hypercapnia compensation.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a> In response to an increase in elastic loading of 30%, Kondili et al.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> recorded greater efficiency in compensation (lesser increase of the work of breathing) with PAV+ than with PSV. Xirouchaki et al. compared the effectiveness of PSV versus PAV+ in maintaining critical patients dependent upon mechanical ventilation in assisted ventilation. They found PAV+ to significantly increase the probability of remaining with spontaneous ventilation, in addition to considerably reducing patient–ventilator asynchrony.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> Thanks precisely to a decrease in patient–ventilator asynchrony, Bosma et al. showed PAV to afford superior sleep quality, with fewer disruptions, in comparison with PSV.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a></p><p id="par0100" class="elsevierStylePara elsevierViewall">The PAV system depends on pneumatic triggering, and therefore has the same limitations for inspiratory cycling in patients with dynamic hyperinsufflation and intrinsic positive-end expiratory pressure (PEEP) as the traditional modes. Although expiratory cycling, based on flow, accompanies the cessation of inspiratory effort, expiratory asynchronies have been described particularly with high assist levels.<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a></p><p id="par0105" class="elsevierStylePara elsevierViewall">The PAV mode can also be used in noninvasive ventilation (NIV). Compared with PSV, mainly in patients with chronic obstructive pulmonary disease (COPD), PAV usually affords higher levels of tolerance, a better physiological response, and fewer complications.<a class="elsevierStyleCrossRefs" href="#bib0100"><span class="elsevierStyleSup">20–22</span></a> However, PAV has not been associated with a decrease in the need for intubation in comparison with PSV. This could be related to the fact that leakage–the main cause of disadaptation and asynchrony during NIV<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a>–equally affects triggering in PAV and in PSV.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Proportional assist ventilation and monitoring</span><p id="par0110" class="elsevierStylePara elsevierViewall">With the PAV+ system we have semicontinuous monitoring of the elastance and resistance of the respiratory system. In addition to providing valuable evolutive information, it allows us to immediately assess the response to changes in the respiratory parameters or to quickly detect possible complications. The system is also able to estimate and monitor Pmus, which is the only unknown factor of the motion equation. Knowing <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">mus</span>, we in turn can calculate the work of breathing, helping to select an adequate assist level with a view to avoiding excessive muscle work or rest.<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">24</span></a></p></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Neurally adjusted ventilatory assist</span><p id="par0115" class="elsevierStylePara elsevierViewall">Neurally adjusted ventilatory assist (NAVA) is a new assisted ventilation mode synchronized and proportional to the effort of the patient that has become available only in the last few years.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">25</span></a> As control signal for both assist and for inspiratory and expiratory cycling of the ventilator, this mode uses the electrical activity of the diaphragm (EAdi). The latter is recorded via transesophageal electromyography using a modified nasogastric tube, also known as an EAdi catheter, which is similar in size and function to a conventional nasogastric tube but equipped with several microelectrodes at the distal tip for recording EAdi. Correct positioning of the catheter is carried out using the transesophageal electrocardiographic signal recorded through the same electrodes as a guide. The operator can check correct positioning (at the esophageal hiatus) on the ventilator screen, based on a simple algorithm.<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">26</span></a></p><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">The electrical activity of the diaphragm</span><p id="par0120" class="elsevierStylePara elsevierViewall">The utilization of EAdi for control of the ventilator has a series of theoretical advantages. In effect, EAdi is a signal that directly (i.e., without calculations or estimates) measures the efferents from the RCS, integrating the sum of time and space of the neural respiratory impulse that results in diaphragmatic activation.<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">27</span></a> The amplitude of the signal depends on the degree of recruitment and on the intensity and frequency of triggering of the motor units, and consequently reflects the intensity with which the patient wishes to breathe.<a class="elsevierStyleCrossRefs" href="#bib0135"><span class="elsevierStyleSup">27,28</span></a> From its origin, the signal takes less than 20<span class="elsevierStyleHsp" style=""></span>ms in triggering the mechanical response of the diaphragm<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">29</span></a>–this being about three to four times faster than the pneumatic trigger response time of modern ventilators. It is therefore the signal closest to the origin of the respiratory stimulus that current technology is able to offer.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Functioning of the NAVA system</span><p id="par0125" class="elsevierStylePara elsevierViewall">During NAVA, inspiratory cycling is determined by the detection of the elevation of EAdi over the expiratory level, with a sensitivity threshold determined by the operator. Expiratory cycling occurs when EAdi decreases to 70% of the maximum inspiratory value (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). This allows adjustment of the duration of the mechanical inspiratory and expiratory times to the neural inspiratory and expiratory times of the patient determined by the RCS, in a way which no other ventilatory mode is able to do.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a> In addition, the NAVA system eliminates the limitations of pneumatic triggering, since it is not affected by leakages or the presence of dynamic hyperinsufflation. This defines NAVA as the ventilatory mode which theoretically offers the greatest level of patient–ventilator synchrony.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0130" class="elsevierStylePara elsevierViewall">In the same way as during PAV, the inspiratory assist is at all times proportional to the effort of the patient and is determined by a proportionality constant adjusted by the operator, called the NAVA level, which amplifies the instantaneous progression of EAdi during the inspiratory phase. The pressure in the airway (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span>) over the level of PEEP, in each moment during inspiration, is expressed as follows:<elsevierMultimedia ident="eq0025"></elsevierMultimedia></p><p id="par0135" class="elsevierStylePara elsevierViewall">Different methods have been proposed for adjusting the NAVA level, which theoretically should be that affording an adequate level of muscle discharge. Brander et al. have described a method based on the response of <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span> to ascending NAVA levels.<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">31</span></a> Starting from low levels, the authors described a double response comprising a gradual increase to a certain NAVA level beyond which <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span> reach a plateau. The optimum NAVA level would be that coinciding with transition from an ascending phase to the plateau phase of the <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span> values. Roze et al. in turn have proposed adjustment to a NAVA level that reaches 60% of the maximum EAdi obtained after a standardized test with minimum assist (pressure support ventilation with 7<span class="elsevierStyleHsp" style=""></span>cmH<span class="elsevierStyleInf">2</span>O and PEEP 0) with a duration of 1<span class="elsevierStyleHsp" style=""></span>h.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">32</span></a></p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">NAVA: clinical characteristics</span><p id="par0140" class="elsevierStylePara elsevierViewall">Several clinical studies have evaluated and compared the physiological response to NAVA. These studies have consistently recorded significant improvement in patient–ventilator synchrony, a lesser over-assistance tendency, and greater variability of the respiratory pattern in comparison with PSV in different groups of patients.<a class="elsevierStyleCrossRefs" href="#bib0165"><span class="elsevierStyleSup">33–40</span></a> Ineffective effort, i.e., inspiratory effort of the patient that is not accompanied by mechanical assist, virtually disappears with NAVA.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">34</span></a> Likewise, in contrast to PSV, increments in assist level have been shown to exert less effect upon the inspiratory and expiratory cycling times,<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">35</span></a> ensuring better synchrony over a broad assist range. Patroniti et al.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">38</span></a> have published a detailed description of the ventilatory pattern during NAVA. In patients with respiratory failure, the authors compared the response to increasing NAVA levels with increasing PSV levels (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>). With NAVA, the patients maintained similar <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and respiratory frequency values, even with high assist levels, despite an increase in <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span>, which corresponded to a decrease in EAdi. In contrast, during PSV, both <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and pressure increased (up to >100% with the maximum level), while the frequency and EAdi decreased.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0145" class="elsevierStylePara elsevierViewall">In the same way as during PAV, studies with NAVA have shown that patients tend to select a protective tidal volume (6<span class="elsevierStyleHsp" style=""></span>ml/kg) with moderate assist levels and a generally higher respiratory frequency.</p><p id="par0150" class="elsevierStylePara elsevierViewall">The NAVA mode has been shown to facilitate assisted ventilation also in patients with seriously impaired respiratory function. In this respect, the NAVA mode reduced asynchrony in patients subjected to extracorporeal oxygenation support and with severely impaired lung distensibility<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">37</span></a> versus PSV, and achieved better auto-regulation of PCO<span class="elsevierStyleInf">2</span> during weaning from extracorporeal oxygenation<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">41</span></a>–in both cases maintaining protective ventilatory parameters with low <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> values.</p><p id="par0155" class="elsevierStylePara elsevierViewall">Because of its operating characteristics, NAVA may be particularly interesting in the context of NIV, since it is not affected by leakages. In this regard, Piquilloud et al.<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">42</span></a> and Bertrand et al.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">43</span></a> reported a significant reduction of asynchronies with NAVA versus PSV during NIV both in patients with exacerbated COPD and in hypoxemic patients.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">NAVA and monitoring</span><p id="par0160" class="elsevierStylePara elsevierViewall">The EAdi signal offers new and interesting possibilities in respiratory monitoring. By affording a direct and continuous measure of the central respiratory stimulus of the patient, the signal allows us to evaluate the response to changes in assist level, detect apneas, evaluate sedation effects, and also assess the neural respiratory stimulus. EAdi is the best tool available for monitoring patient–ventilator synchrony, since it offers direct information on the neural inspiratory and expiratory times and their relation to the mechanical times. It allows us to determine the neural frequency (the real frequency of the patient), thereby enhancing the value of this variable in determining the degree of patient stress or wellbeing. A number of indices derived from the EAdi signal have recently been described. Neuroventilatory efficiency, measured as <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span>/EAdi, indicates the capacity of the diaphragm to generate volume, standardized with respect to the neuronal stimulus. In one same parameter it integrates information on the respiratory stimulus, diaphragmatic function, and respiratory loading, and has been shown to be a good predictor of weaning.<a class="elsevierStyleCrossRefs" href="#bib0220"><span class="elsevierStyleSup">44,45</span></a> Neuromechanical efficiency, measured as <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span>/EAdi during an occlusion in which the patient inhales against a closed valve, provides an estimate of the capacity of the diaphragm to generate force in relation to the neural inspiratory effort. Based on neuromechanical efficiency, Bellani et al. have derived a method to estimate <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">mus</span> from EAdi, thereby producing more objective information for determining the best NAVA level.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">46</span></a></p></span></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Automated modes adaptable to patient demands</span><p id="par0165" class="elsevierStylePara elsevierViewall">These modes encompass closed-loop control modes that incorporate algorithms and control rules which transfer physiological and clinical reasoning principles to automated assist protocols. According to different physiological and clinical objectives, these modes automatically adjust the pressure or minute-volume levels administered to the patient, adapting to the needs of the latter over time. Adaptive support ventilation (ASV) performs cycle-to-cycle adjustments of tidal volume (through changes in pressure) and respiratory frequency, adapting them to changes in respiratory mechanics. NeoGanesh or SmartCare™ in turn performs adjustments, in cycles of several minutes, in delivered pressure support ventilation, adapting the levels to the changing conditions of the patient. The aim is to simulate clinical reasoning in order to avoid under- or over-assistance and to achieve a decrease of the automated support.</p><span id="sec0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Adaptive support ventilation</span><p id="par0170" class="elsevierStylePara elsevierViewall">Adaptive support ventilation (ASV), described in the early nineties, is based on the physiological principle described by Otis and Mead<a class="elsevierStyleCrossRefs" href="#bib0235"><span class="elsevierStyleSup">47,48</span></a> which establishes that for a given level of alveolar ventilation there is an optimum respiratory frequency that results in less work of breathing–a kind of “law of minimum effort”. According to this principle, in order to reach one same alveolar ventilation level at very low frequencies, we require a greater <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span>, increasing the work to overcome the elastic load of the respiratory system. In contrast, at high frequencies, the work of breathing must increase to overcome the resistive load, with a pattern characterized by rapid shallow breathing. Between these two extremes lies the optimum combination of frequency and volume for achieving the desired alveolar ventilation.</p></span><span id="sec0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Functioning of ASV</span><p id="par0175" class="elsevierStylePara elsevierViewall">Unlike the other examined modes, ASV in fact is a mixed mode that can function as a controlled or assisted mode according to the contribution of the patient.</p><p id="par0180" class="elsevierStylePara elsevierViewall"><a class="elsevierStyleCrossRef" href="#fig0025">Figure 5</a> schematically represents the principles of the functioning and control system of ASV. The operator establishes a target percentage minute-volume based on the body weight of the patient.<elsevierMultimedia ident="eq0030"></elsevierMultimedia></p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><p id="par0185" class="elsevierStylePara elsevierViewall">Under normal conditions, % <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf">min</span> is 100%, with the possibility of choosing between 25 and 300%, depending on the conditions of the patient.</p><p id="par0190" class="elsevierStylePara elsevierViewall">It should be remembered here that minute-volume is the sum of the alveolar ventilation volume (the “effective” volume) and the dead space volume. Accordingly, ASV incorporates the estimation of dead space in its algorithm, and which the system assumes to be 2.2<span class="elsevierStyleHsp" style=""></span>ml/kg. The ASV system then adjusts the level of pressure and respiratory frequency cycle-to-cycle, following its algorithm to maintain the ventilatory pattern according to the established target minute-volume, in consistency with the mechanical characteristics of the respiratory system and the spontaneous respiratory frequency of the patient. Inspiratory cycling uses the conventional pneumatic trigger by pressure or flow, while expiratory cycling is by flow as in the case of PSV.</p></span><span id="sec0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">ASV: clinical characteristics</span><p id="par0195" class="elsevierStylePara elsevierViewall">Due to its “mixed” nature, ASV has been studied both as controlled mode and as assist mode. Most clinical studies have focused on examining ASV under passive ventilation (controlled) conditions, comparing it with other modes, and specifically evaluating whether ASV yields protective parameters (low <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span>) in an automated and efficient way.</p><p id="par0200" class="elsevierStylePara elsevierViewall">As assist mode (which is what interests us in this review), ASV has been studied mainly as a mode designed to facilitate weaning. It has been shown to be a safe and effective technique that simplifies the weaning process in the postoperative period of heart surgery<a class="elsevierStyleCrossRefs" href="#bib0245"><span class="elsevierStyleSup">49–51</span></a> and in patients with COPD,<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">52</span></a> and is moreover associated with a lesser consumption of resources. In comparative studies, ASV has not been found to shorten the mechanical ventilation times in heart surgery,<a class="elsevierStyleCrossRefs" href="#bib0250"><span class="elsevierStyleSup">50,51</span></a> though shortened times have been recorded in COPD patients, where Kirakli et al. observed a shortening of the weaning time of over 24<span class="elsevierStyleHsp" style=""></span>h compared with PSV.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">53</span></a></p><p id="par0205" class="elsevierStylePara elsevierViewall">The best comparative clinical study to date on the effect of ASV upon patient–ventilator synchrony was published by Tassaux et al. In comparison with synchronized intermittent ventilation (SIMV-PSV), these authors found ASV to improve synchrony, reducing the muscle load for a similar delivered minute-volume.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">54</span></a></p><p id="par0210" class="elsevierStylePara elsevierViewall">The ASV mode has recently received improvements, with addition to the algorithm of closed-loop control for end-expiratory CO<span class="elsevierStyleInf">2</span> (etCO<span class="elsevierStyleInf">2</span>)<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">55</span></a> and oxygen saturation. The result is an evolved ASV system called IntelliVent™, which allows us to implement a protective ventilatory strategy in both the control phase and in assistance to weaning.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">56</span></a></p></span><span id="sec0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Automated adjustment of pressure support: NeoGanesh-SmartCare™</span><p id="par0215" class="elsevierStylePara elsevierViewall">NeoGanesh and its commercial version SmartCare™ constitute an automated, knowledge-based weaning technique. The control algorithm incorporates rules for action based on clinical reasoning, in an attempt to reproduce the PSV adjustments which the clinician would decide in the same context.</p></span><span id="sec0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Functioning of SmartCare™</span><p id="par0220" class="elsevierStylePara elsevierViewall">The control algorithm of the system uses the values of <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span>, respiratory frequency and etCO<span class="elsevierStyleInf">2</span>. These values are averaged every two minutes (every 5<span class="elsevierStyleHsp" style=""></span>min in the case of changes in pressure level) and provide the algorithm with a “ventilatory diagnosis”. The system responds as follows: (1) it reduces the level of PSV in the case of diagnosed over-assist (e.g., the combination of high <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> with low frequency and etCO<span class="elsevierStyleInf">2</span>); (2) it increases assist in the event of insufficient assistance (increasing frequency together with other additional criteria); and (3) it introduces no changes in the case of normal ventilation. The aim is to move the patient toward a zone of respiratory wellbeing in order to start the weaning process. This zone of wellbeing is derived from the patient characteristics (body weight, type of illness, size of the endotracheal tube, type of humidifier). The values are entered by the clinician in the ventilator, and determine the limits of <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span>, frequency and etCO<span class="elsevierStyleInf">2</span>, and the PSV adjustments required. The automated weaning protocol involves automated adaptation of the PSV level followed by an automated PSV reduction phase, and finally an automated spontaneous breathing test.</p></span><span id="sec0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">SmartCare™: clinical characteristics</span><p id="par0225" class="elsevierStylePara elsevierViewall">SmartCare™ is able to facilitate the weaning process, reducing resource consumption and shortening the time on mechanical ventilation. Clinical studies have reported somewhat discordant findings in relation to such benefits, depending on whether the control group included<a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">57</span></a> or did not include<a class="elsevierStyleCrossRef" href="#bib0290"><span class="elsevierStyleSup">58</span></a> weaning protocols and sufficient resources (patient/nurse ratio).<a class="elsevierStyleCrossRef" href="#bib0295"><span class="elsevierStyleSup">59</span></a> In the most recent multicenter study involving 92 patients with over 24<span class="elsevierStyleHsp" style=""></span>h of mechanical ventilation, automated weaning shorted the duration of mechanical ventilation by one day, and also lessened the need for tracheostomy compared with a protocolized conventional weaning group.<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">60</span></a></p></span></span><span id="sec0105" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Variable pressure support ventilation (noisy ventilation)</span><p id="par0230" class="elsevierStylePara elsevierViewall">Variability is an intrinsic characteristic not only of the respiratory system but also of any complex biological system, and the loss of such variability is generally associated with functional impairment.<a class="elsevierStyleCrossRef" href="#bib0305"><span class="elsevierStyleSup">61</span></a> There is a growing evidence of the beneficial effect of variability, understood as cycle-to-cycle changes in <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span> and <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> and/or respiratory frequency, upon the respiratory system.<a class="elsevierStyleCrossRef" href="#bib0310"><span class="elsevierStyleSup">62</span></a> All the new assist modes described thus far introduce respiratory variability, the latter being determined to one degree or other by the patient. Variable pressure support ventilation (V-PSV) introduces random variability in the levels of pressure support ventilation, resulting in a ventilatory pattern that is variable but independent of the demands of the patient and his or her inspiratory effort.</p><span id="sec0110" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0130">Functioning of variable ventilation</span><p id="par0235" class="elsevierStylePara elsevierViewall">V-PSV (noisy ventilation) is based on the recurrent application of a set of 600 pressure values generated on a random basis. These values follow a normal distribution, with a mean and standard deviation adjusted to achieve the desired level of variability (measured by the coefficient of variation; in general 1<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>0.3, to afford a variability of 30%).<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">63</span></a> The mean pressure value is adjusted to obtain a <span class="elsevierStyleItalic">V</span><span class="elsevierStyleInf"><span class="elsevierStyleSmallCaps">t</span></span> of 6<span class="elsevierStyleHsp" style=""></span>ml/kg, and the pressure limits are determined by the adjusted upper pressure limit and the expiratory pressure level (PEEP or CPAP). The clinician can adjust the level of variability between 0 and 100%, and the system maintains a stable mean pressure.</p><p id="par0240" class="elsevierStylePara elsevierViewall">Experimental studies have consistently shown beneficial physiological effects, such as improved gas exchange and respiratory mechanics. A relevant aspect is the possible benefits in terms of lung protection.<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">64</span></a> The mechanisms underlying the improvement in respiratory mechanics are not fully clear, but an alveolar recruitment effect has been postulated, together with possible stimulation of the production and release of surfactant.<a class="elsevierStyleCrossRef" href="#bib0325"><span class="elsevierStyleSup">65</span></a></p><p id="par0245" class="elsevierStylePara elsevierViewall">Although an attractive mode, the lack of clinical data means that many questions still need to be answered before the true clinical usefulness of the technique can be established. As an example, what pattern or level of variability would have been most appropriate for a given situation? In this respect, Spieth et al.<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">63</span></a> used an experimental surfactant depletion model to show that the best choice for improving respiratory mechanics and gas exchange corresponds to a coefficient of variation of 30%, which interestingly coincides with the normal respiratory variability values during spontaneous ventilation.<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">63</span></a> In patients we will have to determine whether this level of variability is also optimum, and whether extrinsic variability offers advantages with respect to the intrinsic variability of the patient (such as that introduced in PAV or NAVA), as well as explore the effects upon patient–ventilator synchrony.</p></span></span><span id="sec0115" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0135">Conclusions</span><p id="par0250" class="elsevierStylePara elsevierViewall">These are very interesting times for mechanical ventilation. The constant technological advances have allowed the development of new assisted ventilation modes with the capacity to adapt to the changing patient needs. The new modes allow the patient a total control of the ventilatory process, causing the ventilator to act as an accessory muscle in synchrony with patient inspiratory effort. New modes that incorporate increasingly complex closed-loop or knowledge-based control systems are paving the way toward gradual automatization of the mechanical ventilation process. It can be expected that such modes and automatization will gradually find their way into routine clinical practice. The results of future studies will help us to better define their advantages, indications and benefits in assisting patients subjected to mechanical ventilation.</p></span><span id="sec0125" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0140">Conflicts of interest</span><p id="par0260" class="elsevierStylePara elsevierViewall">The author serves as a consultant to Maquet Critical Care.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:14 [ 0 => array:2 [ "identificador" => "xres339239" "titulo" => "Abstract" ] 1 => array:2 [ "identificador" => "xpalclavsec320813" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xres339238" "titulo" => "Resumen" ] 3 => array:2 [ "identificador" => "xpalclavsec320812" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "The challenges of assisted ventilation" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Assist modes adapted to the instantaneous inspiratory effort of the patient" ] 7 => array:3 [ "identificador" => "sec0020" "titulo" => "Proportional assist ventilation" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0025" "titulo" => "Principles of proportional assist ventilation" ] 1 => array:2 [ "identificador" => "sec0030" "titulo" => "Functioning of proportional assist ventilation with load-adjustable gain factors (PAV+)" ] 2 => array:2 [ "identificador" => "sec0035" "titulo" => "PAV and PAV+: clinical characteristics" ] 3 => array:2 [ "identificador" => "sec0040" "titulo" => "Proportional assist ventilation and monitoring" ] ] ] 8 => array:3 [ "identificador" => "sec0045" "titulo" => "Neurally adjusted ventilatory assist" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0050" "titulo" => "The electrical activity of the diaphragm" ] 1 => array:2 [ "identificador" => "sec0055" "titulo" => "Functioning of the NAVA system" ] 2 => array:2 [ "identificador" => "sec0060" "titulo" => "NAVA: clinical characteristics" ] 3 => array:2 [ "identificador" => "sec0065" "titulo" => "NAVA and monitoring" ] ] ] 9 => array:3 [ "identificador" => "sec0070" "titulo" => "Automated modes adaptable to patient demands" "secciones" => array:6 [ 0 => array:2 [ "identificador" => "sec0075" "titulo" => "Adaptive support ventilation" ] 1 => array:2 [ "identificador" => "sec0080" "titulo" => "Functioning of ASV" ] 2 => array:2 [ "identificador" => "sec0085" "titulo" => "ASV: clinical characteristics" ] 3 => array:2 [ "identificador" => "sec0090" "titulo" => "Automated adjustment of pressure support: NeoGanesh-SmartCare™" ] 4 => array:2 [ "identificador" => "sec0095" "titulo" => "Functioning of SmartCare™" ] 5 => array:2 [ "identificador" => "sec0100" "titulo" => "SmartCare™: clinical characteristics" ] ] ] 10 => array:3 [ "identificador" => "sec0105" "titulo" => "Variable pressure support ventilation (noisy ventilation)" "secciones" => array:1 [ 0 => array:2 [ "identificador" => "sec0110" "titulo" => "Functioning of variable ventilation" ] ] ] 11 => array:2 [ "identificador" => "sec0115" "titulo" => "Conclusions" ] 12 => array:2 [ "identificador" => "sec0125" "titulo" => "Conflicts of interest" ] 13 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec320813" "palabras" => array:3 [ 0 => "Patient–ventilation synchrony" 1 => "Assisted mechanical ventilation" 2 => "Work of breathing" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec320812" "palabras" => array:3 [ 0 => "Sincronía paciente–ventilador" 1 => "Ventilación mecánica asistida" 2 => "Trabajo respiratorio" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient–ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes.</p>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Los mayores avances en ventilación mecánica de los últimos años se han producido en el desarrollo de nuevos modos de ventilación asistida. En comparación con los modos tradicionales como la ventilación controlada-asistida o la presión de soporte, ofrecen una serie de ventajas fisiológicas así como un mayor control sobre el ventilador por parte del paciente. Basados en la utilización de algoritmos de control de asa cerrada que incorporan información de la mecánica, la actividad de la musculatura respiratoria y del estímulo respiratorio, estos modos están diseñados específicamente para mejorar la sincronía paciente-ventilador y reducir el trabajo respiratorio. Dependiendo de las características de funcionamiento específicas de cada modo, estos pueden ayudar en los esfuerzos respiratorios espontáneos del paciente de forma sincronizada en tiempo y magnitud, adaptarse a sus demandas, realizar protocolos automatizados de reducción del soporte y devolver al patrón respiratorio una variabilidad más fisiológica. El clínico tiene ahora a su disposición modos que permiten individualizar y optimizar la asistencia ventilatoria mecánica en la compleja transición de la ventilación controlada a la ventilación espontánea-asistida. La creciente evidencia de las ventajas fisiológicas y clínicas de estos nuevos modos así como las nuevas posibilidades de monitorización que ofrecen, están llevando a su paulatina introducción en la práctica diaria. Futuros estudios permitirán aumentar nuestro conocimiento acerca de estos modos y deberán determinar si sus beneficios se traducen en mejores resultados clínicos.</p>" ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Suarez-Sipmann F, por el Grupo de Trabajo de Insuficiencia Respiratoria Aguda de la SEMICYUC. Nuevos modos de ventilación asistida. Med Intensiva. 2014;38:249–260.</p>" ] ] "multimedia" => array:11 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2374 "Ancho" => 3249 "Tamanyo" => 364993 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Principles of patient–ventilator interaction. Assisted ventilation has the difficult task of harmonizing the operation of two complex systems, i.e., patient and ventilator–each with its own control center and ventilatory pump. The respiratory control system (RCS) is complex, and is composed of an automatic system and a voluntary system. The afferents transmit the stimuli from the sensors (central and peripheral chemoreceptors, stretch receptors and muscle receptors) to the control system, regulating the neural respiratory impulse. The automatic control system emits the efferents (motor neurons) that activate and regulate the muscle pump. The voluntary system in turn can modulate the activity of the automatic system or directly activate the muscle pump.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1762 "Ancho" => 2515 "Tamanyo" => 185853 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Schematic representation of the PAV system. The PAV mode affords assistance proportional to effort through the continuous measurement of the flow and volume (1) leaving the ventilator toward the patient, conditioned to the muscle pressure (Pmus) generated by the patient and which leads to a decrease in alveolar pressure (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">alv</span>). The flow and volume are amplified (AF and AV) by adjustable gain controls (2), and the sum of both signals conforms the input control signal (3) that generates the pressure response of the ventilator motor. The latter drives the piston, causing the ventilator to respond with rapid flow delivery to the patient in proportion to his or her <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">alv</span>, overcoming the elastic and resistive pressure. The pressure-time and flow-time curves resulting from the mechanical cycle (4) show that the pressurization pattern is gradual, reaching the maximum value at the end of inspiration, and exhibiting proportionality at all times. Note that expiratory cycling coincides with the drop in inspiratory pressure, i.e., the cessation of inspiratory effort (second broken line), and the more physiological sinusoidal morphology of flow of the inspiratory phase.</p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "fuente" => "Adapted from Suarez-Sipmann et al.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">30</span></a>." "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1601 "Ancho" => 3260 "Tamanyo" => 240450 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">EAdi signal and characteristic respiratory curves during ventilation in NAVA. (A) EAdi signal. The start of inspiration is given by the increase in EAdi activity (first broken line) from the expiratory activity, which under normal conditions is 0. At the point where EAdi reaches a threshold value (first dotted line), the ventilator starts assist until EAdi drops to 70% of the maximum value (second dotted line). The neural inspiratory time comprises the period between the two solid lines, and ends when EAdi reaches its maximum value. The mechanical ventilatory time comprises the period between the two broken lines (inspiratory and expiratory cycling). Note that although minimal, there is a phase lag in the time between the neural and mechanical times due to the imposed cycling criteria. (B) The curves corresponding to pressure, flow and EAdi of a cycle show the perfect inspiratory (first broken line) and expiratory cycling synchrony produced immediately after the start of the neural time of the patient, in relation to the cessation of inspiratory effort. In the same way as in PAV, pressurization is gradual, and in NAVA follows or parallels the morphology of the inspiratory phase of EAdi. The NAVA level is 1, and we can see that the end-inspiratory pressure reached is 22<span class="elsevierStyleHsp" style=""></span>cmH<span class="elsevierStyleInf">2</span>O, which corresponds to EAdi (=12)<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>NAVA level (=1)<span class="elsevierStyleHsp" style=""></span>+<span class="elsevierStyleHsp" style=""></span>PEEP level (=10).</p>" ] ] 3 => array:8 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "fuente" => "Adapted from Patroniti et al.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">38</span></a>." "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1637 "Ancho" => 3250 "Tamanyo" => 268503 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Effect of different NAVA levels and pressure support. Note that in NAVA, and in contrast to pressure support ventilation (PSV), greater assist levels do not increase the tidal volume or decrease the respiratory frequency, and the pressure in the airway reaches a plateau with higher assist levels–corresponding to a decrease in EAdi. The increase in assist is accompanied by increased variability in tidal volume in NAVA, while it decreases in PSV. PS: pressure support ventilation; EAdi: electrical activity of the diaphragm; CV EAdi peak: coefficient of variation of the electrical activity of the diaphragm; CV TV: coefficient of variation of the tidal volume; <span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">aw</span>: pressure in the airway; RR: respiratory frequency; TV/kg: tidal volume per kg ideal weight. *<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 versus the lowest assist level for the same ventilatory mode. **<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.05 versus the highest assist level for the same ventilatory mode.</p>" ] ] 4 => array:8 [ "identificador" => "fig0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "fuente" => "Adapted from Tassaux et al.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">54</span></a>." "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1948 "Ancho" => 2184 "Tamanyo" => 184374 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Functioning of ASV. Before starting, the clinician enters the data referred to patient weight, percentage minute-volume (estimated a priori according to the patient and disease condition), FiO<span class="elsevierStyleInf">2</span>, PEEP and the maximum inspiratory pressure limit (<span class="elsevierStyleItalic">P</span><span class="elsevierStyleInf">max</span>). Analysis of the flow-volume curve determines the expiratory time constant, and minimum squares fitting is used to calculate the respiratory mechanics and the presence of intrinsic PEEP. The closed-loop control algorithm of the ASV system adjusts the inspiratory pressure according to the iterative equation derived from Otis and Mead. The combinations of target minute-volume and frequency are continuously adjusted to reach and keep the patient on the minute-isovolumetric curve (IsoVM).</p>" ] ] 5 => array:5 [ "identificador" => "eq0005" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Ptotal=flow×resistance+volume×elastance" "Fichero" => "si1.jpeg" "Tamanyo" => 2794 "Alto" => 13 "Ancho" => 307 ] ] 6 => array:5 [ "identificador" => "eq0010" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Ptotal=Pmus+Pvent" "Fichero" => "si2.jpeg" "Tamanyo" => 1123 "Alto" => 13 "Ancho" => 122 ] ] 7 => array:5 [ "identificador" => "eq0015" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Pvent=(%Flow assistance)×Resistance+(% Volume assistance)×Elastance" "Fichero" => "si3.jpeg" "Tamanyo" => 4551 "Alto" => 42 "Ancho" => 291 ] ] 8 => array:5 [ "identificador" => "eq0020" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Proportionality=%assistance100−%assistance" "Fichero" => "si4.jpeg" "Tamanyo" => 2925 "Alto" => 31 "Ancho" => 236 ] ] 9 => array:5 [ "identificador" => "eq0025" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Paw=EAdi (μV)×level−NAVA+PEEP" "Fichero" => "si5.jpeg" "Tamanyo" => 2205 "Alto" => 14 "Ancho" => 251 ] ] 10 => array:5 [ "identificador" => "eq0030" "tipo" => "MULTIMEDIAFORMULA" "mostrarFloat" => false "mostrarDisplay" => true "Formula" => array:5 [ "Matematica" => "Vmin=% Vmin×ideal weight1000 in adult patients" "Fichero" => "si6.jpeg" "Tamanyo" => 2855 "Alto" => 35 "Ancho" => 191 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:65 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evolution of mechanical ventilation in response to clinical research" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Esteban" 1 => "N.D. Ferguson" 2 => "M.O. Meade" 3 => "F. Frutos-Vivar" 4 => "C. Apezteguía" 5 => "L. Brochard" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/rccm.200706-893OC" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2008" "volumen" => "177" "paginaInicial" => "170" "paginaFinal" => "177" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17962636" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ventilatory failure, ventilator support, and ventilator weaning" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M.J. Tobin" 1 => "F. Laghi" 2 => "A. Jubran" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/cphy.c110030" "Revista" => array:6 [ "tituloSerie" => "Compr Physiol" "fecha" => "2012" "volumen" => "2" "paginaInicial" => "2871" "paginaFinal" => "2921" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23720268" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "CO<span class="elsevierStyleInf">2</span>, brainstem chemoreceptors and breathing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Nattie" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Prog Neurobiol" "fecha" => "1999" "volumen" => "59" "paginaInicial" => "299" "paginaFinal" => "331" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10501632" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patient–ventilator asynchrony during assisted mechanical ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A.W. Thille" 1 => "P. Rodriguez" 2 => "B. Cabello" 3 => "F. Lellouche" 4 => "L. Brochard" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-006-0301-8" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2006" "volumen" => "32" "paginaInicial" => "1515" "paginaFinal" => "1522" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16896854" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reduction of patient–ventilator asynchrony by reducing tidal volume during pressure-support ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "A.W. Thille" 1 => "B. Cabello" 2 => "F. Galia" 3 => "A. Lyazidi" 4 => "L. Brochard" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-008-1121-9" "Revista" => array:7 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2008" "volumen" => "34" "paginaInicial" => "1477" "paginaFinal" => "1486" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18437356" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S073510970501925X" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Proportional assist ventilation, a new approach to ventilatory support. Theory" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Younes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm/145.1.114" "Revista" => array:6 [ "tituloSerie" => "Am Rev Respir Dis" "fecha" => "1992" "volumen" => "145" "paginaInicial" => "114" "paginaFinal" => "120" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1731573" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Response of ventilator-dependent patients to different levels of proportional assist" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "S. Marantz" 1 => "W. Patrick" 2 => "K. Webster" 3 => "D. Roberts" 4 => "L. Oppenheimer" 5 => "M. Younes" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Appl Physiol" "fecha" => "1996" "volumen" => "80" "paginaInicial" => "397" "paginaFinal" => "403" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8929575" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of different levels of pressure support and proportional assist ventilation on breathing pattern, work of breathing and gas exchange in mechanically ventilated hypercapnic COPD patients with acute respiratory failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "F. Passam" 1 => "S. Hoing" 2 => "G. Prinianakis" 3 => "N. Siafakas" 4 => "J. Milic-Emili" 5 => "D. Georgopoulos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "72897" "Revista" => array:6 [ "tituloSerie" => "Respiration" "fecha" => "2003" "volumen" => "70" "paginaInicial" => "355" "paginaFinal" => "361" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14512669" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A method for noninvasive determination of inspiratory resistance during proportional assist ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Younes" 1 => "J. Kun" 2 => "B. Masiowski" 3 => "K. Webster" 4 => "D. Roberts" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.163.4.2005063" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2001" "volumen" => "163" "paginaInicial" => "829" "paginaFinal" => "839" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11282753" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A method for measuring passive elastance during proportional assist ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M. Younes" 1 => "K. Webster" 2 => "J. Kun" 3 => "D. Roberts" 4 => "B. Masiowski" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.164.1.2010068" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2001" "volumen" => "164" "paginaInicial" => "50" "paginaFinal" => "60" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11435238" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physiologic response of ventilator-dependent patients with chronic obstructive pulmonary disease to proportional assist ventilation and continuous positive airway pressure" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Appendini" 1 => "A. Purro" 2 => "M. Gudjonsdottir" 3 => "P. Baderna" 4 => "A. Patessio" 5 => "S. Zanaboni" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.159.5.9804130" "Revista" => array:7 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "1999" "volumen" => "159" "paginaInicial" => "1510" "paginaFinal" => "1517" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10228119" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0735109797000776" "estado" => "S300" "issn" => "07351097" ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Respiratory muscle workload in intubated, spontaneously breathing patients without COPD: pressure support vs proportional assist ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Delaere" 1 => "J. Roeseler" 2 => "W. D’hoore" 3 => "P. Matte" 4 => "M. Reynaert" 5 => "P. Jolliet" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-003-1704-4" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2003" "volumen" => "29" "paginaInicial" => "949" "paginaFinal" => "954" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12664221" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of proportional assist ventilation on inspiratory muscle effort in patients with chronic obstructive pulmonary disease and acute respiratory failure" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "V.M. Ranieri" 1 => "S. Grasso" 2 => "L. Mascia" 3 => "S. Martino" 4 => "T. Fiore" 5 => "A. Brienza" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Anesthesiology" "fecha" => "1997" "volumen" => "86" "paginaInicial" => "79" "paginaFinal" => "91" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9009943" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Compensation for increase in respiratory workload during mechanical ventilation. Pressure-support versus proportional-assist ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Grasso" 1 => "F. Puntillo" 2 => "L. Mascia" 3 => "G. Ancona" 4 => "T. Fiore" 5 => "F. Bruno" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.161.3.9902065" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2000" "volumen" => "161" "paginaInicial" => "819" "paginaFinal" => "826" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10712328" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patient–ventilator interaction during acute hypercapnia: pressure-support vs proportional-assist ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "V.M. Ranieri" 1 => "R. Giuliani" 2 => "L. Mascia" 3 => "S. Grasso" 4 => "V. Petruzzelli" 5 => "N. Puntillo" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Appl Physiol" "fecha" => "1996" "volumen" => "81" "paginaInicial" => "426" "paginaFinal" => "436" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8828695" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Respiratory load compensation during mechanical ventilation—proportional assist ventilation with load-adjustable gain factors versus pressure support" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "E. Kondili" 1 => "G. Prinianakis" 2 => "C. Alexopoulou" 3 => "E. Vakouti" 4 => "M. Klimathianaki" 5 => "D. Georgopoulos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-006-0110-0" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2006" "volumen" => "32" "paginaInicial" => "692" "paginaFinal" => "699" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16523329" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N. Xirouchaki" 1 => "E. Kondili" 2 => "K. Vaporidi" 3 => "G. Xirouchakis" 4 => "M. Klimathianaki" 5 => "G. Gavriilidis" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-008-1209-2" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2008" "volumen" => "34" "paginaInicial" => "2026" "paginaFinal" => "2034" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18607562" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patient–ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K. Bosma" 1 => "G. Ferreyra" 2 => "C. Ambrogio" 3 => "D. Pasero" 4 => "L. Mirabella" 5 => "A. Braghiroli" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/01.CCM.0000260055.64235.7C" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2007" "volumen" => "35" "paginaInicial" => "1048" "paginaFinal" => "1054" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17334259" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Expiratory asynchrony in proportional assist ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H.-L. Du" 1 => "M. Ohtsuji" 2 => "M. Shigeta" 3 => "D.C. Chao" 4 => "K. Sasaki" 5 => "Y. Usuda" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.165.7.2103049" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2002" "volumen" => "165" "paginaInicial" => "972" "paginaFinal" => "977" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11934724" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Noninvasive proportional assist ventilation for acute respiratory insufficiency. Comparison with pressure support ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P.C. Gay" 1 => "D.R. Hess" 2 => "N.S. Hill" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/ajrccm.164.9.2011119" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2001" "volumen" => "164" "paginaInicial" => "1606" "paginaFinal" => "1611" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11719297" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Noninvasive proportional assist ventilation compared with noninvasive pressure support ventilation in hypercapnic acute respiratory failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Wysocki" 1 => "J.-C. Richard" 2 => "P. Meshaka" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2002" "volumen" => "30" "paginaInicial" => "323" "paginaFinal" => "329" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11889302" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Noninvasive pressure support versus proportional assist ventilation in acute respiratory failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Fernández-Vivas" 1 => "J. Caturla-Such" 2 => "J. González de la Rosa" 3 => "J. Acosta-Escribano" 4 => "B. Alvarez-Sánchez" 5 => "J. Cánovas-Robles" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-003-1768-1" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2003" "volumen" => "29" "paginaInicial" => "1126" "paginaFinal" => "1133" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12802487" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patient–ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Vignaux" 1 => "F. Vargas" 2 => "J. Roeseler" 3 => "D. Tassaux" 4 => "A.W. Thille" 5 => "M.P. Kossowsky" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-009-1416-5" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2009" "volumen" => "35" "paginaInicial" => "840" "paginaFinal" => "846" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19183949" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Respiratory work and pattern with different proportional assist ventilation levels" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "F. Ruiz-Ferrón" 1 => "J. Machado" 2 => "A. Morante" 3 => "S. Galindo" 4 => "A. Castillo" 5 => "L. Rucabado" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0210-5691(09)72194-1" "Revista" => array:6 [ "tituloSerie" => "Med Intensiva" "fecha" => "2009" "volumen" => "33" "paginaInicial" => "269" "paginaFinal" => "275" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19811968" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neural control of mechanical ventilation in respiratory failure" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Sinderby" 1 => "P. Navalesi" 2 => "J. Beck" 3 => "Y. Skrobik" 4 => "N. Comtois" 5 => "S. Friberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/71012" "Revista" => array:6 [ "tituloSerie" => "Nat Med" "fecha" => "1999" "volumen" => "5" "paginaInicial" => "1433" "paginaFinal" => "1436" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/10581089" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of the catheter positioning for neurally adjusted ventilatory assist" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J. Barwing" 1 => "M. Ambold" 2 => "N. Linden" 3 => "M. Quintel" 4 => "O. Moerer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-009-1587-0" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2009" "volumen" => "35" "paginaInicial" => "1809" "paginaFinal" => "1814" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19652950" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nervous output from the respiratory center during obstructed breathing" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R.V. Lourenço" 1 => "N.S. Cherniack" 2 => "J.R. Malm" 3 => "A.P. Fishman" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Appl Physiol" "fecha" => "1966" "volumen" => "21" "paginaInicial" => "527" "paginaFinal" => "533" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/5934459" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of lung volume on diaphragm EMG signal strength during voluntary contractions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Beck" 1 => "C. Sinderby" 2 => "L. Lindström" 3 => "A. Grassino" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Appl Physiol" "fecha" => "1998" "volumen" => "85" "paginaInicial" => "1123" "paginaFinal" => "1134" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9729591" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Diaphragm interference pattern EMG and compound muscle action potentials: effects of chest wall configuration" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Beck" 1 => "C. Sinderby" 2 => "L. Lindström" 3 => "A. Grassino" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Appl Physiol" "fecha" => "1997" "volumen" => "82" "paginaInicial" => "520" "paginaFinal" => "530" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9049732" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "New modes of ventilation: NAVA" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F. Suárez-Sipmann" 1 => "M. Pérez Márquez" 2 => "P. González Arenas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Med Intensiva" "fecha" => "2008" "volumen" => "32" "paginaInicial" => "398" "paginaFinal" => "403" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19055933" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Titration and implementation of neurally adjusted ventilatory assist in critically ill patients" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Brander" 1 => "H. Leong-Poi" 2 => "J. Beck" 3 => "F. Brunet" 4 => "S.J. Hutchison" 5 => "A.S. Slutsky" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1378/chest.08-1747" "Revista" => array:6 [ "tituloSerie" => "Chest" "fecha" => "2009" "volumen" => "135" "paginaInicial" => "695" "paginaFinal" => "703" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19017889" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Daily titration of neurally adjusted ventilatory assist using the diaphragm electrical activity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Rozé" 1 => "A. Lafrikh" 2 => "V. Perrier" 3 => "A. Germain" 4 => "A. Dewitte" 5 => "F. Gomez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-011-2209-1" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2011" "volumen" => "37" "paginaInicial" => "1087" "paginaFinal" => "1094" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21424827" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "D. Colombo" 1 => "G. Cammarota" 2 => "V. Bergamaschi" 3 => "M. De Lucia" 4 => "F.D. Corte" 5 => "P. Navalesi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-008-1208-3" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2008" "volumen" => "34" "paginaInicial" => "2010" "paginaFinal" => "2018" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18629471" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurally adjusted ventilatory assist improves patient–ventilator interaction" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Piquilloud" 1 => "L. Vignaux" 2 => "E. Bialais" 3 => "J. Roeseler" 4 => "T. Sottiaux" 5 => "P-F. Laterre" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-010-2052-9" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2010" "volumen" => "37" "paginaInicial" => "263" "paginaFinal" => "271" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20871978" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patient–ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Spahija" 1 => "M. de Marchie" 2 => "M. Albert" 3 => "P. Bellemare" 4 => "S. Delisle" 5 => "J. Beck" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/CCM.0b013e3181cb0d7b" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2010" "volumen" => "38" "paginaInicial" => "518" "paginaFinal" => "526" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20083921" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: Physiological evaluation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N. Terzi" 1 => "I. Pelieu" 2 => "L. Guittet" 3 => "M. Ramakers" 4 => "A. Seguin" 5 => "C. Daubin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/CCM.0b013e3181eb3c51" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2010" "volumen" => "38" "paginaInicial" => "1830" "paginaFinal" => "1837" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20639752" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patient–ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: A novel approach based on diaphragm electrical activity" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T. Mauri" 1 => "G. Bellani" 2 => "G. Grasselli" 3 => "A. Confalonieri" 4 => "R. Rona" 5 => "N. Patroniti" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-012-2755-1" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2013" "volumen" => "39" "paginaInicial" => "282" "paginaFinal" => "291" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23196419" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Respiratory pattern during neurally adjusted ventilatory assist in acute respiratory failure patients" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N. Patroniti" 1 => "G. Bellani" 2 => "E. Saccavino" 3 => "A. Zanella" 4 => "G. Grasselli" 5 => "S. Isgrò" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-011-2433-8" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2012" "volumen" => "38" "paginaInicial" => "230" "paginaFinal" => "239" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22127483" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Physiologic response to various levels of pressure support and NAVA in prolonged weaning" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "G. Vagheggini" 1 => "S. Mazzoleni" 2 => "E. Vlad Panait" 3 => "P. Navalesi" 4 => "N. Ambrosino" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.rmed.2013.08.013" "Revista" => array:6 [ "tituloSerie" => "Respir Med" "fecha" => "2013" "volumen" => "107" "paginaInicial" => "1748" "paginaFinal" => "1754" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24035203" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ventilation distribution measured with EIT at varying levels of pressure support and neurally adjusted ventilatory assist in patients with ALI" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "P. Blankman" 1 => "D. Hasan" 2 => "M.S. van Mourik" 3 => "D. Gommers" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-013-2898-8" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2013" "volumen" => "39" "paginaInicial" => "1057" "paginaFinal" => "1062" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23553568" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0205" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Karagiannidis" 1 => "M. Lubnow" 2 => "A. Philipp" 3 => "G.A.J. Riegger" 4 => "C. Schmid" 5 => "M. Pfeifer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-010-1982-6" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2010" "volumen" => "36" "paginaInicial" => "2038" "paginaFinal" => "2044" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20689930" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0210" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurally adjusted ventilatory assist (NAVA) improves patient–ventilator interaction during non-invasive ventilation delivered by face mask" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Piquilloud" 1 => "D. Tassaux" 2 => "E. Bialais" 3 => "B. Lambermont" 4 => "T. Sottiaux" 5 => "J. Roeseler" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-012-2626-9" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2012" "volumen" => "38" "paginaInicial" => "1624" "paginaFinal" => "1631" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22885649" "web" => "Medline" ] ] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0215" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neurally adjusted ventilatory assist vs pressure support ventilation for noninvasive ventilation during acute respiratory failure: a crossover physiologic study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "P-M. Bertrand" 1 => "E. Futier" 2 => "Y. Coisel" 3 => "S. Matecki" 4 => "S. Jaber" 5 => "J.-M. Constantin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1378/chest.12-0424" "Revista" => array:6 [ "tituloSerie" => "Chest" "fecha" => "2013" "volumen" => "143" "paginaInicial" => "30" "paginaFinal" => "36" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22661448" "web" => "Medline" ] ] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0220" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neuroventilatory efficiency and extubation readiness in critically ill patients" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "L. Liu" 1 => "H. Liu" 2 => "Y. Yang" 3 => "Y. Huang" 4 => "S. Liu" 5 => "J. Beck" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/cc11451" "Revista" => array:5 [ "tituloSerie" => "Crit Care" "fecha" => "2012" "volumen" => "16" "paginaInicial" => "R143" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22849707" "web" => "Medline" ] ] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0225" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Neuro-ventilatory efficiency during weaning from mechanical ventilation using neurally adjusted ventilatory assist" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Rozé" 1 => "B. Repusseau" 2 => "V. Perrier" 3 => "A. Germain" 4 => "R. Séramondi" 5 => "A. Dewitte" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bja/aet258" "Revista" => array:6 [ "tituloSerie" => "Br J Anaesth" "fecha" => "2013" "volumen" => "111" "paginaInicial" => "955" "paginaFinal" => "960" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23959781" "web" => "Medline" ] ] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0230" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimation of patient's inspiratory effort from the electrical activity of the diaphragm" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Bellani" 1 => "T. Mauri" 2 => "A. Coppadoro" 3 => "G. Grasselli" 4 => "N. Patroniti" 5 => "S. Spadaro" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/CCM.0b013e31827caba0" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2013" "volumen" => "41" "paginaInicial" => "1483" "paginaFinal" => "1491" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23478659" "web" => "Medline" ] ] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0235" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanics of breathing in man" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A.B. Otis" 1 => "W.O. Fenn" 2 => "H. Rahn" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "J Appl Physiol" "fecha" => "1950" "volumen" => "2" "paginaInicial" => "592" "paginaFinal" => "607" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15436363" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673600020699" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0240" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The control of respiratory frequency" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Mead" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Appl Physiol" "fecha" => "1960" "volumen" => "15" "paginaInicial" => "325" "paginaFinal" => "336" ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0245" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clinical experience with adaptive support ventilation for fast-track cardiac surgery" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T. Cassina" 1 => "R. Chioléro" 2 => "R. Mauri" 3 => "J.-P. Revelly" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "J Thorac Cardiovasc Surg" "fecha" => "2003" "volumen" => "17" "paginaInicial" => "571" "paginaFinal" => "575" ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0250" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Automatic «respirator/eeaning» with adaptive support ventilation: the effect on duration of endotracheal intubation and patient management" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.H. Petter" 1 => "R.L. Chioléro" 2 => "T. Cassina" 3 => "P.-G. Chassot" 4 => "X.M. Müller" 5 => "J.-P. Revelly" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Anesth Analg" "fecha" => "2003" "volumen" => "97" "paginaInicial" => "1743" "paginaFinal" => "1750" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14633553" "web" => "Medline" ] ] ] ] ] ] ] ] 50 => array:3 [ "identificador" => "bib0255" "etiqueta" => "51" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Adaptive support ventilation with protocolized de-escalation and escalation does not accelerate tracheal extubation of patients after nonfast-track cardiothoracic surgery" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.A. Dongelmans" 1 => "D.P. Veelo" 2 => "J.M. Binnekade" 3 => "B.A.J.M. de Mol" 4 => "A. Kudoga" 5 => "F. Paulus" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1213/ANE.0b013e3181efb316" "Revista" => array:6 [ "tituloSerie" => "Anesth Analg" "fecha" => "2010" "volumen" => "111" "paginaInicial" => "961" "paginaFinal" => "967" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20810675" "web" => "Medline" ] ] ] ] ] ] ] ] 51 => array:3 [ "identificador" => "bib0260" "etiqueta" => "52" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Automatic weaning from mechanical ventilation using an adaptive lung ventilation controller" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "D.M. Linton" 1 => "P.D. Potgieter" 2 => "S. Davis" 3 => "A.T. Fourie" 4 => "J.X. Brunner" 5 => "T.P. Laubscher" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Chest" "fecha" => "1994" "volumen" => "106" "paginaInicial" => "1843" "paginaFinal" => "1850" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7988211" "web" => "Medline" ] ] ] ] ] ] ] ] 52 => array:3 [ "identificador" => "bib0265" "etiqueta" => "53" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Adaptive support ventilation for faster weaning in COPD: a randomised controlled trial" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Kirakli" 1 => "I. Ozdemir" 2 => "Z.Z. Ucar" 3 => "P. Cimen" 4 => "S. Kepil" 5 => "S.A. Ozkan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1183/09031936.00081510" "Revista" => array:6 [ "tituloSerie" => "Eur Respir J" "fecha" => "2011" "volumen" => "38" "paginaInicial" => "774" "paginaFinal" => "780" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21406514" "web" => "Medline" ] ] ] ] ] ] ] ] 53 => array:3 [ "identificador" => "bib0270" "etiqueta" => "54" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Patient–ventilator interactions during partial ventilatory support: a preliminary study comparing the effects of adaptive support ventilation with synchronized intermittent mandatory ventilation plus inspiratory pressure support" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D. Tassaux" 1 => "E. Dalmas" 2 => "P. Gratadour" 3 => "P. Jolliet" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2002" "volumen" => "30" "paginaInicial" => "801" "paginaFinal" => "807" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11940749" "web" => "Medline" ] ] ] ] ] ] ] ] 54 => array:3 [ "identificador" => "bib0275" "etiqueta" => "55" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Adaptive support ventilation with and without end-tidal CO<span class="elsevierStyleInf">2</span> closed loop control versus conventional ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "D.S. Sulemanji" 1 => "A. Marchese" 2 => "M. Wysocki" 3 => "R.M. Kacmarek" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-012-2742-6" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2013" "volumen" => "39" "paginaInicial" => "703" "paginaFinal" => "710" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23151992" "web" => "Medline" ] ] ] ] ] ] ] ] 55 => array:3 [ "identificador" => "bib0280" "etiqueta" => "56" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Safety and efficacy of a fully closed-loop control ventilation (IntelliVent-ASV<span class="elsevierStyleSup">®</span>) in sedated ICU patients with acute respiratory failure: a prospective randomized crossover study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J-M. Arnal" 1 => "M. Wysocki" 2 => "D. Novotni" 3 => "D. Demory" 4 => "R. Lopez" 5 => "S. Donati" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-012-2548-6" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2012" "volumen" => "38" "paginaInicial" => "781" "paginaFinal" => "787" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22460854" "web" => "Medline" ] ] ] ] ] ] ] ] 56 => array:3 [ "identificador" => "bib0285" "etiqueta" => "57" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Automatic control of pressure support for ventilator weaning in surgical intensive care patients" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D. Schädler" 1 => "C. Engel" 2 => "G. Elke" 3 => "S. Pulletz" 4 => "N. Haake" 5 => "I. Frerichs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/rccm.201106-1127OC" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2012" "volumen" => "185" "paginaInicial" => "637" "paginaFinal" => "644" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22268137" "web" => "Medline" ] ] ] ] ] ] ] ] 57 => array:3 [ "identificador" => "bib0290" "etiqueta" => "58" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "F. Lellouche" 1 => "J. Mancebo" 2 => "P. Jolliet" 3 => "J. Roeseler" 4 => "F. Schortgen" 5 => "M. Dojat" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/rccm.200511-1780OC" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2006" "volumen" => "174" "paginaInicial" => "894" "paginaFinal" => "900" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16840741" "web" => "Medline" ] ] ] ] ] ] ] ] 58 => array:3 [ "identificador" => "bib0295" "etiqueta" => "59" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A randomised, controlled trial of conventional versus automated weaning from mechanical ventilation using SmartCare/PS" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Rose" 1 => "J.J. Presneill" 2 => "L. Johnston" 3 => "J.F. Cade" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-008-1179-4" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2008" "volumen" => "34" "paginaInicial" => "1788" "paginaFinal" => "1795" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18575843" "web" => "Medline" ] ] ] ] ] ] ] ] 59 => array:3 [ "identificador" => "bib0300" "etiqueta" => "60" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wean earlier and automatically with new technology (the WEAN study). A multicenter, pilot randomized controlled trial" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.E.A. Burns" 1 => "M.O. Meade" 2 => "M.R. Lessard" 3 => "L. Hand" 4 => "Q. Zhou" 5 => "S.P. Keenan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1164/rccm.201206-1026OC" "Revista" => array:6 [ "tituloSerie" => "Am J Respir Crit Care Med" "fecha" => "2013" "volumen" => "187" "paginaInicial" => "1203" "paginaFinal" => "1211" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23525929" "web" => "Medline" ] ] ] ] ] ] ] ] 60 => array:3 [ "identificador" => "bib0305" "etiqueta" => "61" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "A.L. Goldberger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "1996" "volumen" => "347" "paginaInicial" => "1312" "paginaFinal" => "1314" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8622511" "web" => "Medline" ] ] ] ] ] ] ] ] 61 => array:3 [ "identificador" => "bib0310" "etiqueta" => "62" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Wysocki" 1 => "C. Cracco" 2 => "A. Teixeira" 3 => "A. Mercat" 4 => "J-L. Diehl" 5 => "Y. Lefort" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/01.CCM.0000227175.83575.E9" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2006" "volumen" => "34" "paginaInicial" => "2076" "paginaFinal" => "2083" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16755257" "web" => "Medline" ] ] ] ] ] ] ] ] 62 => array:3 [ "identificador" => "bib0315" "etiqueta" => "63" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effects of different levels of pressure support variability in experimental lung injury" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P.M. Spieth" 1 => "A.R. Carvalho" 2 => "A. Güldner" 3 => "P. Pelosi" 4 => "O. Kirichuk" 5 => "T. Koch" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ALN.0b013e318194d06e" "Revista" => array:6 [ "tituloSerie" => "Anesthesiology" "fecha" => "2009" "volumen" => "110" "paginaInicial" => "342" "paginaFinal" => "350" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19194161" "web" => "Medline" ] ] ] ] ] ] ] ] 63 => array:3 [ "identificador" => "bib0320" "etiqueta" => "64" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P.M. Spieth" 1 => "A.R. Carvalho" 2 => "A. Güldner" 3 => "M. Kasper" 4 => "R. Schubert" 5 => "N.C. Carvalho" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/CCM.0b013e318206bda6" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2011" "volumen" => "39" "paginaInicial" => "746" "paginaFinal" => "755" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21263322" "web" => "Medline" ] ] ] ] ] ] ] ] 64 => array:3 [ "identificador" => "bib0325" "etiqueta" => "65" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Variable ventilation induces endogenous surfactant release in normal guinea pigs" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "S.P. Arold" 1 => "B. Suki" 2 => "A.M. Alencar" 3 => "K.R. Lutchen" 4 => "E.P. Ingenito" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1152/ajplung.00036.2003" "Revista" => array:6 [ "tituloSerie" => "Am J Physiol Lung Cell Mol Physiol" "fecha" => "2003" "volumen" => "285" "paginaInicial" => "L370" "paginaFinal" => "L375" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12851212" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21735727/0000003800000004/v1_201405150137/S2173572714000216/v1_201405150137/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/21735727/0000003800000004/v1_201405150137/S2173572714000216/v1_201405150137/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572714000216?idApp=WMIE" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 37 | 20 | 57 |
2024 October | 286 | 117 | 403 |
2024 September | 267 | 111 | 378 |
2024 August | 222 | 98 | 320 |
2024 July | 214 | 87 | 301 |
2024 June | 196 | 89 | 285 |
2024 May | 243 | 92 | 335 |
2024 April | 252 | 101 | 353 |
2024 March | 188 | 74 | 262 |
2024 February | 185 | 102 | 287 |
2024 January | 184 | 83 | 267 |
2023 December | 179 | 62 | 241 |
2023 November | 199 | 97 | 296 |
2023 October | 186 | 117 | 303 |
2023 September | 144 | 61 | 205 |
2023 August | 98 | 38 | 136 |
2023 July | 151 | 75 | 226 |
2023 June | 161 | 56 | 217 |
2023 May | 169 | 82 | 251 |
2023 April | 138 | 65 | 203 |
2023 March | 185 | 405 | 590 |
2023 February | 147 | 55 | 202 |
2023 January | 142 | 63 | 205 |
2022 December | 145 | 103 | 248 |
2022 November | 196 | 85 | 281 |
2022 October | 170 | 79 | 249 |
2022 September | 141 | 106 | 247 |
2022 August | 129 | 73 | 202 |
2022 July | 133 | 111 | 244 |
2022 June | 123 | 78 | 201 |
2022 May | 143 | 84 | 227 |
2022 April | 135 | 68 | 203 |
2022 March | 150 | 105 | 255 |
2022 February | 144 | 108 | 252 |
2022 January | 200 | 85 | 285 |
2021 December | 158 | 74 | 232 |
2021 November | 157 | 65 | 222 |
2021 October | 262 | 53 | 315 |
2021 September | 169 | 70 | 239 |
2021 August | 170 | 53 | 223 |
2021 July | 124 | 74 | 198 |
2021 June | 130 | 100 | 230 |
2021 May | 183 | 85 | 268 |
2021 April | 868 | 148 | 1016 |
2021 March | 566 | 94 | 660 |
2021 February | 290 | 78 | 368 |
2021 January | 296 | 80 | 376 |
2020 December | 265 | 56 | 321 |
2020 November | 269 | 72 | 341 |
2020 October | 235 | 72 | 307 |
2020 September | 193 | 73 | 266 |
2020 August | 253 | 99 | 352 |
2020 July | 269 | 101 | 370 |
2020 June | 307 | 69 | 376 |
2020 May | 351 | 79 | 430 |
2020 April | 688 | 141 | 829 |
2020 March | 275 | 90 | 365 |
2020 February | 443 | 109 | 552 |
2020 January | 199 | 98 | 297 |
2019 December | 210 | 52 | 262 |
2019 November | 398 | 81 | 479 |
2019 October | 341 | 95 | 436 |
2019 September | 295 | 98 | 393 |
2019 August | 264 | 98 | 362 |
2019 July | 249 | 65 | 314 |
2019 June | 228 | 70 | 298 |
2019 May | 297 | 105 | 402 |
2019 April | 298 | 73 | 371 |
2019 March | 235 | 96 | 331 |
2019 February | 198 | 52 | 250 |
2019 January | 203 | 84 | 287 |
2018 December | 301 | 99 | 400 |
2018 November | 437 | 129 | 566 |
2018 October | 393 | 58 | 451 |
2018 September | 277 | 29 | 306 |
2018 August | 173 | 36 | 209 |
2018 July | 105 | 36 | 141 |
2018 June | 116 | 25 | 141 |
2018 May | 63 | 26 | 89 |
2018 April | 153 | 75 | 228 |
2018 March | 140 | 46 | 186 |
2018 February | 113 | 27 | 140 |
2018 January | 134 | 73 | 207 |
2017 December | 98 | 32 | 130 |
2017 November | 131 | 63 | 194 |
2017 October | 103 | 52 | 155 |
2017 September | 88 | 79 | 167 |
2017 August | 66 | 93 | 159 |
2017 July | 74 | 68 | 142 |
2017 June | 156 | 112 | 268 |
2017 May | 146 | 72 | 218 |
2017 April | 142 | 94 | 236 |
2017 March | 138 | 132 | 270 |
2017 February | 198 | 83 | 281 |
2017 January | 79 | 59 | 138 |
2016 December | 98 | 54 | 152 |
2016 November | 184 | 82 | 266 |
2016 October | 200 | 75 | 275 |
2016 September | 248 | 69 | 317 |
2016 August | 188 | 52 | 240 |
2016 July | 82 | 93 | 175 |
2016 May | 1 | 0 | 1 |
2016 April | 1 | 0 | 1 |
2016 February | 2 | 0 | 2 |
2015 December | 2 | 0 | 2 |