was read the article
array:24 [ "pii" => "S2173572720300722" "issn" => "21735727" "doi" => "10.1016/j.medine.2020.01.005" "estado" => "S300" "fechaPublicacion" => "2020-06-01" "aid" => "1453" "copyright" => "Elsevier España, S.L.U. and SEMICYUC" "copyrightAnyo" => "2020" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "cor" "cita" => "Med Intensiva. 2020;44:320" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0210569120300292" "issn" => "02105691" "doi" => "10.1016/j.medin.2020.01.004" "estado" => "S300" "fechaPublicacion" => "2020-06-01" "aid" => "1453" "copyright" => "Elsevier España, S.L.U. y SEMICYUC" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "cor" "cita" => "Med Intensiva. 2020;44:320" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Carta al Editor</span>" "titulo" => "En respuesta a «Big Data Analysis y Machine Learning en medicina intensiva: identificando nuevos retos ético-jurídicos»" "tienePdf" => "es" "tieneTextoCompleto" => "es" "paginas" => array:1 [ 0 => array:1 [ "paginaInicial" => "320" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "In reply to «Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges»" ] ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A. Núñez Reiz, M. Sánchez García" "autores" => array:2 [ 0 => array:2 [ "nombre" => "A." "apellidos" => "Núñez Reiz" ] 1 => array:2 [ "nombre" => "M." "apellidos" => "Sánchez García" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173572720300722" "doi" => "10.1016/j.medine.2020.01.005" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300722?idApp=WMIE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569120300292?idApp=WMIE" "url" => "/02105691/0000004400000005/v1_202005280745/S0210569120300292/v1_202005280745/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2173572720300035" "issn" => "21735727" "doi" => "10.1016/j.medine.2020.01.002" "estado" => "S300" "fechaPublicacion" => "2020-06-01" "aid" => "1367" "copyright" => "Elsevier España, S.L.U. and SEMICYUC" "documento" => "article" "crossmark" => 1 "subdocumento" => "sco" "cita" => "Med Intensiva. 2020;44:321-2" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Images in Intensive Medicine</span>" "titulo" => "Malposition of nasogastric tube diagnosed by ultrasound in abdominal surgery patient" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "321" "paginaFinal" => "322" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Mala colocación de la sonda nasogástrica diagnosticada por ecografía en paciente postoperado de cirugía abdominal" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:6 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1073 "Ancho" => 1500 "Tamanyo" => 120158 ] ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "P.E. Edroso Jarne, L. Monge Sola, R. Vicho Pereira" "autores" => array:3 [ 0 => array:2 [ "nombre" => "P.E." "apellidos" => "Edroso Jarne" ] 1 => array:2 [ "nombre" => "L." "apellidos" => "Monge Sola" ] 2 => array:2 [ "nombre" => "R." "apellidos" => "Vicho Pereira" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0210569119301822" "doi" => "10.1016/j.medin.2019.07.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569119301822?idApp=WMIE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300035?idApp=WMIE" "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300035/v1_202006090711/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2173572720300710" "issn" => "21735727" "doi" => "10.1016/j.medine.2019.11.006" "estado" => "S300" "fechaPublicacion" => "2020-06-01" "aid" => "1421" "copyright" => "Elsevier España, S.L.U. and SEMICYUC" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "cor" "cita" => "Med Intensiva. 2020;44:319-20" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>" "titulo" => "Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "319" "paginaFinal" => "320" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Big Data Analysis y Machine Learning en medicina intensiva: identificando nuevos retos ético-jurídicos" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "G. Lazcoz Moratinos, I. de Miguel Beriain" "autores" => array:2 [ 0 => array:2 [ "nombre" => "G." "apellidos" => "Lazcoz Moratinos" ] 1 => array:2 [ "nombre" => "I." "apellidos" => "de Miguel Beriain" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0210569119302736" "doi" => "10.1016/j.medin.2019.11.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569119302736?idApp=WMIE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300710?idApp=WMIE" "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300710/v1_202006090711/en/main.assets" ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>" "titulo" => "In reply to “Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges”" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:1 [ "paginaInicial" => "320" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "A. Núñez Reiz, M. Sánchez García" "autores" => array:2 [ 0 => array:4 [ "nombre" => "A." "apellidos" => "Núñez Reiz" "email" => array:1 [ 0 => "anunezreiz@gmail.com" ] "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:2 [ "nombre" => "M." "apellidos" => "Sánchez García" ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Unidad de Cuidados Intensivos, Hospital Clínico San Carlos, Madrid, Spain" "identificador" => "aff0005" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "En respuesta a «Big Data Analysis y Machine Learning en medicina intensiva: identificando nuevos retos ético-jurídicos»" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">We wish to thank professors Lazcoz Moratinos and de Miguel Beriain for their comments<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">1</span></a>. We fully understand their preoccupation on the scientific and legal challenge posed by the use of artificial intelligence in the management of critically ill patients. However, we wish to make some considerations on this regard.</p><p id="par0010" class="elsevierStylePara elsevierViewall">The clinical decisions made by intensivists are also based on a learning process much like the one used by the algorithm. Also, the concept of “intuition” that we use in our daily routine clinical practice could be interpreted as unfounded or unexplained, and yet it is actually based on a process that is similar to that used by artificial intelligence. These decision-making processes are subjective and do not fall within any legal framework. However, in a manner of speaking clinicians are somehow “natural artificial intelligence”.</p><p id="par0015" class="elsevierStylePara elsevierViewall">When doctors use antibiotics, they may not fully understand the molecular mechanisms involved that make the drug kill the bacteria. Although it is desirable that the mechanism of action and “biological plausibility” are known, if clinical studies with enough numbers of patients shows that the use of antibiotics improves the diagnosis of the patient, using them is completely justified. Fleming did not know how penicillin worked when he started using it. But also, antibiotics can have side effects and even death in very isolated cases. Should we then stop using them?</p><p id="par0020" class="elsevierStylePara elsevierViewall">The excessively rigorous implementation of the regulatory framework in the management of data in clinical studies is already having negative consequences in the progression of conditions like Alzheimer's disease or diabetes<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">2</span></a>. A reasonable regulatory framework would give artificial intelligence the same recognition antibiotics and other drugs have and require the same verification procedures of their safety and efficacy in clinical trials. However, if the use of an artificial intelligence-based algorithm for the management of shock in septic patients would positively improve mortality with fewer side effects in clinical trials, should we stop using it simply because the clinician does not exactly understand how it works? This degree of demand is not applied to other novel therapies especially assuming the human cost associated with living without new therapeutic tools like this one.</p><p id="par0025" class="elsevierStylePara elsevierViewall">Also, progress is being made trying to understand the “reasoning” processes behind artificial intelligence-based tools<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">3</span></a> (similar to those used to understand how pencillin broke the bacterial wall) to a point that a few years from now we may be able to understand why algorithms make this or that decision.</p><p id="par0030" class="elsevierStylePara elsevierViewall">Artificial intelligence can be a very useful tool in the coming future and improve our management of critically ill patients. As a matter of fact, it is already being used in other specialties<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">4</span></a>. We hereby recommend not doing a disservice to ourselves with extreme legal arguments of protecting patients who would probably suffer the consequences of certain therapeutic opportunities derived from the use of artificial intelligence taken away from them. With a very demanding legal framework we would still die of pneumonia for not being able to use penicillin.</p></span>" "pdfFichero" => "main.pdf" "tienePdf" => true "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Núñez Reiz A, Sánchez García M. En respuesta a «Big Data Analysis y Machine Learning en medicina intensiva: identificando nuevos retos ético-jurídicos». Med Intensiva. 2020;44:320–320.</p>" ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:4 [ 0 => array:3 [ "identificador" => "bib0025" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Big Data Analysis y Machine Learning en medicina intensiva: identificando nuevos retos ético-jurídicos" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Lazcoz Moratinos" 1 => "I. de Miguel Beriain" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.medin.2019.11.003" "Revista" => array:3 [ "tituloSerie" => "Med Intensiva" "fecha" => "2017" "volumen" => "44" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0030" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Researchers sound alarm on European data law" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T. Rabesandratana" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.366.6468.936" "Revista" => array:5 [ "tituloSerie" => "Science" "fecha" => "2019" "volumen" => "366" "paginaInicial" => "936" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31753976" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0035" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:1 [ "titulo" => "Explainable and interpretable models in computer vision and machine learning" ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2018" "editorial" => "Springer Science+Business Media" "editorialLocalizacion" => "New York, NY" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0040" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deep learning applications in ophthalmology" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "E. Rahimy" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ICU.0000000000000470" "Revista" => array:6 [ "tituloSerie" => "Curr Opin Ophthalmol" "fecha" => "2018" "volumen" => "29" "paginaInicial" => "254" "paginaFinal" => "260" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29528860" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300722/v1_202006090711/en/main.assets" "Apartado" => array:4 [ "identificador" => "64604" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Letters to the Editor" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735727/0000004400000005/v1_202006090711/S2173572720300722/v1_202006090711/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300722?idApp=WMIE" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 3 | 6 | 9 |
2024 October | 37 | 30 | 67 |
2024 September | 35 | 31 | 66 |
2024 August | 45 | 34 | 79 |
2024 July | 26 | 22 | 48 |
2024 June | 33 | 39 | 72 |
2024 May | 31 | 29 | 60 |
2024 April | 36 | 26 | 62 |
2024 March | 28 | 30 | 58 |
2024 February | 21 | 35 | 56 |
2024 January | 32 | 34 | 66 |
2023 December | 22 | 41 | 63 |
2023 November | 32 | 39 | 71 |
2023 October | 24 | 26 | 50 |
2023 September | 25 | 39 | 64 |
2023 August | 17 | 18 | 35 |
2023 July | 27 | 20 | 47 |
2023 June | 23 | 13 | 36 |
2023 May | 28 | 34 | 62 |
2023 April | 17 | 12 | 29 |
2023 March | 28 | 24 | 52 |
2023 February | 25 | 24 | 49 |
2023 January | 21 | 15 | 36 |
2022 December | 39 | 26 | 65 |
2022 November | 38 | 28 | 66 |
2022 October | 54 | 31 | 85 |
2022 September | 56 | 29 | 85 |
2022 August | 72 | 39 | 111 |
2022 July | 62 | 34 | 96 |
2022 June | 23 | 27 | 50 |
2022 May | 27 | 28 | 55 |
2022 April | 19 | 29 | 48 |
2022 March | 29 | 50 | 79 |
2022 February | 20 | 28 | 48 |
2022 January | 26 | 28 | 54 |
2021 December | 32 | 42 | 74 |
2021 November | 20 | 35 | 55 |
2021 October | 44 | 68 | 112 |
2021 September | 17 | 32 | 49 |
2021 August | 21 | 26 | 47 |
2021 July | 17 | 21 | 38 |
2021 June | 21 | 20 | 41 |
2021 May | 19 | 38 | 57 |
2021 April | 63 | 79 | 142 |
2021 March | 41 | 27 | 68 |
2021 February | 31 | 26 | 57 |
2021 January | 43 | 25 | 68 |
2020 December | 41 | 14 | 55 |
2020 November | 16 | 13 | 29 |
2020 October | 15 | 9 | 24 |
2020 July | 50 | 9 | 59 |
2020 June | 72 | 17 | 89 |
2020 May | 17 | 13 | 30 |
2020 April | 27 | 9 | 36 |