array:24 [
  "pii" => "S2173572720300722"
  "issn" => "21735727"
  "doi" => "10.1016/j.medine.2020.01.005"
  "estado" => "S300"
  "fechaPublicacion" => "2020-06-01"
  "aid" => "1453"
  "copyright" => "Elsevier España, S.L.U. and SEMICYUC"
  "copyrightAnyo" => "2020"
  "documento" => "simple-article"
  "crossmark" => 1
  "subdocumento" => "cor"
  "cita" => "Med Intensiva. 2020;44:320"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "Traduccion" => array:1 [
    "es" => array:19 [
      "pii" => "S0210569120300292"
      "issn" => "02105691"
      "doi" => "10.1016/j.medin.2020.01.004"
      "estado" => "S300"
      "fechaPublicacion" => "2020-06-01"
      "aid" => "1453"
      "copyright" => "Elsevier España, S.L.U. y SEMICYUC"
      "documento" => "simple-article"
      "crossmark" => 1
      "subdocumento" => "cor"
      "cita" => "Med Intensiva. 2020;44:320"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:1 [
        "total" => 0
      ]
      "es" => array:10 [
        "idiomaDefecto" => true
        "cabecera" => "<span class="elsevierStyleTextfn">Carta al Editor</span>"
        "titulo" => "En respuesta a &#171;Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos&#187;"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "paginas" => array:1 [
          0 => array:1 [
            "paginaInicial" => "320"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "In reply to &#171;Big Data Analysis and Machine Learning in Intensive Care Medicine&#58; Identifying new ethical and legal challenges&#187;"
          ]
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "A&#46; N&#250;&#241;ez Reiz, M&#46; S&#225;nchez Garc&#237;a"
            "autores" => array:2 [
              0 => array:2 [
                "nombre" => "A&#46;"
                "apellidos" => "N&#250;&#241;ez Reiz"
              ]
              1 => array:2 [
                "nombre" => "M&#46;"
                "apellidos" => "S&#225;nchez Garc&#237;a"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "S2173572720300722"
          "doi" => "10.1016/j.medine.2020.01.005"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300722?idApp=WMIE"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569120300292?idApp=WMIE"
      "url" => "/02105691/0000004400000005/v1_202005280745/S0210569120300292/v1_202005280745/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:19 [
    "pii" => "S2173572720300035"
    "issn" => "21735727"
    "doi" => "10.1016/j.medine.2020.01.002"
    "estado" => "S300"
    "fechaPublicacion" => "2020-06-01"
    "aid" => "1367"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
    "documento" => "article"
    "crossmark" => 1
    "subdocumento" => "sco"
    "cita" => "Med Intensiva. 2020;44:321-2"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Images in Intensive Medicine</span>"
      "titulo" => "Malposition of nasogastric tube diagnosed by ultrasound in abdominal surgery patient"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "321"
          "paginaFinal" => "322"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Mala colocaci&#243;n de la sonda nasog&#225;strica diagnosticada por ecograf&#237;a en paciente postoperado de cirug&#237;a abdominal"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:6 [
          "identificador" => "fig0005"
          "etiqueta" => "Figure 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 1073
              "Ancho" => 1500
              "Tamanyo" => 120158
            ]
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "P&#46;E&#46; Edroso Jarne, L&#46; Monge Sola, R&#46; Vicho Pereira"
          "autores" => array:3 [
            0 => array:2 [
              "nombre" => "P&#46;E&#46;"
              "apellidos" => "Edroso Jarne"
            ]
            1 => array:2 [
              "nombre" => "L&#46;"
              "apellidos" => "Monge Sola"
            ]
            2 => array:2 [
              "nombre" => "R&#46;"
              "apellidos" => "Vicho Pereira"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "S0210569119301822"
        "doi" => "10.1016/j.medin.2019.07.003"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569119301822?idApp=WMIE"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300035?idApp=WMIE"
    "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300035/v1_202006090711/en/main.assets"
  ]
  "itemAnterior" => array:19 [
    "pii" => "S2173572720300710"
    "issn" => "21735727"
    "doi" => "10.1016/j.medine.2019.11.006"
    "estado" => "S300"
    "fechaPublicacion" => "2020-06-01"
    "aid" => "1421"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
    "documento" => "simple-article"
    "crossmark" => 1
    "subdocumento" => "cor"
    "cita" => "Med Intensiva. 2020;44:319-20"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:10 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
      "titulo" => "Big Data Analysis and Machine Learning in Intensive Care Medicine&#58; Identifying new ethical and legal challenges"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "319"
          "paginaFinal" => "320"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "G&#46; Lazcoz Moratinos, I&#46; de Miguel Beriain"
          "autores" => array:2 [
            0 => array:2 [
              "nombre" => "G&#46;"
              "apellidos" => "Lazcoz Moratinos"
            ]
            1 => array:2 [
              "nombre" => "I&#46;"
              "apellidos" => "de Miguel Beriain"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "S0210569119302736"
        "doi" => "10.1016/j.medin.2019.11.003"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569119302736?idApp=WMIE"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300710?idApp=WMIE"
    "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300710/v1_202006090711/en/main.assets"
  ]
  "en" => array:12 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
    "titulo" => "In reply to &#8220;Big Data Analysis and Machine Learning in Intensive Care Medicine&#58; Identifying new ethical and legal challenges&#8221;"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:1 [
        "paginaInicial" => "320"
      ]
    ]
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "A&#46; N&#250;&#241;ez Reiz, M&#46; S&#225;nchez Garc&#237;a"
        "autores" => array:2 [
          0 => array:4 [
            "nombre" => "A&#46;"
            "apellidos" => "N&#250;&#241;ez Reiz"
            "email" => array:1 [
              0 => "anunezreiz@gmail.com"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0005"
              ]
            ]
          ]
          1 => array:2 [
            "nombre" => "M&#46;"
            "apellidos" => "S&#225;nchez Garc&#237;a"
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "Unidad de Cuidados Intensivos&#44; Hospital Cl&#237;nico San Carlos&#44; Madrid&#44; Spain"
            "identificador" => "aff0005"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Corresponding author&#46;"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "En respuesta a &#171;Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos&#187;"
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">We wish to thank professors Lazcoz Moratinos and de Miguel Beriain for their comments<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">1</span></a>&#46; We fully understand their preoccupation on the scientific and legal challenge posed by the use of artificial intelligence in the management of critically ill patients&#46; However&#44; we wish to make some considerations on this regard&#46;</p><p id="par0010" class="elsevierStylePara elsevierViewall">The clinical decisions made by intensivists are also based on a learning process much like the one used by the algorithm&#46; Also&#44; the concept of &#8220;intuition&#8221; that we use in our daily routine clinical practice could be interpreted as unfounded or unexplained&#44; and yet it is actually based on a process that is similar to that used by artificial intelligence&#46; These decision-making processes are subjective and do not fall within any legal framework&#46; However&#44; in a manner of speaking clinicians are somehow &#8220;natural artificial intelligence&#8221;&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">When doctors use antibiotics&#44; they may not fully understand the molecular mechanisms involved that make the drug kill the bacteria&#46; Although it is desirable that the mechanism of action and &#8220;biological plausibility&#8221; are known&#44; if clinical studies with enough numbers of patients shows that the use of antibiotics improves the diagnosis of the patient&#44; using them is completely justified&#46; Fleming did not know how penicillin worked when he started using it&#46; But also&#44; antibiotics can have side effects and even death in very isolated cases&#46; Should we then stop using them&#63;</p><p id="par0020" class="elsevierStylePara elsevierViewall">The excessively rigorous implementation of the regulatory framework in the management of data in clinical studies is already having negative consequences in the progression of conditions like Alzheimer&#39;s disease or diabetes<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">2</span></a>&#46; A reasonable regulatory framework would give artificial intelligence the same recognition antibiotics and other drugs have and require the same verification procedures of their safety and efficacy in clinical trials&#46; However&#44; if the use of an artificial intelligence-based algorithm for the management of shock in septic patients would positively improve mortality with fewer side effects in clinical trials&#44; should we stop using it simply because the clinician does not exactly understand how it works&#63; This degree of demand is not applied to other novel therapies especially assuming the human cost associated with living without new therapeutic tools like this one&#46;</p><p id="par0025" class="elsevierStylePara elsevierViewall">Also&#44; progress is being made trying to understand the &#8220;reasoning&#8221; processes behind artificial intelligence-based tools<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">3</span></a> &#40;similar to those used to understand how pencillin broke the bacterial wall&#41; to a point that a few years from now we may be able to understand why algorithms make this or that decision&#46;</p><p id="par0030" class="elsevierStylePara elsevierViewall">Artificial intelligence can be a very useful tool in the coming future and improve our management of critically ill patients&#46; As a matter of fact&#44; it is already being used in other specialties<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">4</span></a>&#46; We hereby recommend not doing a disservice to ourselves with extreme legal arguments of protecting patients who would probably suffer the consequences of certain therapeutic opportunities derived from the use of artificial intelligence taken away from them&#46; With a very demanding legal framework we would still die of pneumonia for not being able to use penicillin&#46;</p></span>"
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "NotaPie" => array:1 [
      0 => array:2 [
        "etiqueta" => "&#9734;"
        "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as&#58; N&#250;&#241;ez Reiz A&#44; S&#225;nchez Garc&#237;a M&#46; En respuesta a &#171;Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos&#187;&#46; Med Intensiva&#46; 2020&#59;44&#58;320&#8211;320&#46;</p>"
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0015"
          "bibliografiaReferencia" => array:4 [
            0 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "G&#46; Lazcoz Moratinos"
                            1 => "I&#46; de Miguel Beriain"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2019.11.003"
                      "Revista" => array:3 [
                        "tituloSerie" => "Med Intensiva"
                        "fecha" => "2017"
                        "volumen" => "44"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Researchers sound alarm on European data law"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "T&#46; Rabesandratana"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1126/science.366.6468.936"
                      "Revista" => array:5 [
                        "tituloSerie" => "Science"
                        "fecha" => "2019"
                        "volumen" => "366"
                        "paginaInicial" => "936"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31753976"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "titulo" => "Explainable and interpretable models in computer vision and machine learning"
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:3 [
                        "fecha" => "2018"
                        "editorial" => "Springer Science&#43;Business Media"
                        "editorialLocalizacion" => "New York&#44; NY"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Deep learning applications in ophthalmology"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "E&#46; Rahimy"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1097/ICU.0000000000000470"
                      "Revista" => array:6 [
                        "tituloSerie" => "Curr Opin Ophthalmol"
                        "fecha" => "2018"
                        "volumen" => "29"
                        "paginaInicial" => "254"
                        "paginaFinal" => "260"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29528860"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300722/v1_202006090711/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "64604"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Letters to the Editor"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/21735727/0000004400000005/v1_202006090711/S2173572720300722/v1_202006090711/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300722?idApp=WMIE"
]
Share
Journal Information

Statistics

Follow this link to access the full text of the article

Letter to the Editor
In reply to “Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges”
En respuesta a «Big Data Analysis y Machine Learning en medicina intensiva: identificando nuevos retos ético-jurídicos»
A. Núñez Reiz
Corresponding author
anunezreiz@gmail.com

Corresponding author.
, M. Sánchez García
Unidad de Cuidados Intensivos, Hospital Clínico San Carlos, Madrid, Spain
Read
3209
Times
was read the article
1521
Total PDF
1688
Total HTML
Share statistics
 array:24 [
  "pii" => "S2173572720300722"
  "issn" => "21735727"
  "doi" => "10.1016/j.medine.2020.01.005"
  "estado" => "S300"
  "fechaPublicacion" => "2020-06-01"
  "aid" => "1453"
  "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
  "copyrightAnyo" => "2020"
  "documento" => "simple-article"
  "crossmark" => 1
  "subdocumento" => "cor"
  "cita" => "Med Intensiva. 2020;44:320"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "Traduccion" => array:1 [
    "es" => array:19 [
      "pii" => "S0210569120300292"
      "issn" => "02105691"
      "doi" => "10.1016/j.medin.2020.01.004"
      "estado" => "S300"
      "fechaPublicacion" => "2020-06-01"
      "aid" => "1453"
      "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; y SEMICYUC"
      "documento" => "simple-article"
      "crossmark" => 1
      "subdocumento" => "cor"
      "cita" => "Med Intensiva. 2020;44:320"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:1 [
        "total" => 0
      ]
      "es" => array:10 [
        "idiomaDefecto" => true
        "cabecera" => "<span class="elsevierStyleTextfn">Carta al Editor</span>"
        "titulo" => "En respuesta a &#171;Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos&#187;"
        "tienePdf" => "es"
        "tieneTextoCompleto" => "es"
        "paginas" => array:1 [
          0 => array:1 [
            "paginaInicial" => "320"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "en" => array:1 [
            "titulo" => "In reply to &#171;Big Data Analysis and Machine Learning in Intensive Care Medicine&#58; Identifying new ethical and legal challenges&#187;"
          ]
        ]
        "contieneTextoCompleto" => array:1 [
          "es" => true
        ]
        "contienePdf" => array:1 [
          "es" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "A&#46; N&#250;&#241;ez Reiz, M&#46; S&#225;nchez Garc&#237;a"
            "autores" => array:2 [
              0 => array:2 [
                "nombre" => "A&#46;"
                "apellidos" => "N&#250;&#241;ez Reiz"
              ]
              1 => array:2 [
                "nombre" => "M&#46;"
                "apellidos" => "S&#225;nchez Garc&#237;a"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "es"
      "Traduccion" => array:1 [
        "en" => array:9 [
          "pii" => "S2173572720300722"
          "doi" => "10.1016/j.medine.2020.01.005"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "en"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300722?idApp=WMIE"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569120300292?idApp=WMIE"
      "url" => "/02105691/0000004400000005/v1_202005280745/S0210569120300292/v1_202005280745/es/main.assets"
    ]
  ]
  "itemSiguiente" => array:19 [
    "pii" => "S2173572720300035"
    "issn" => "21735727"
    "doi" => "10.1016/j.medine.2020.01.002"
    "estado" => "S300"
    "fechaPublicacion" => "2020-06-01"
    "aid" => "1367"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
    "documento" => "article"
    "crossmark" => 1
    "subdocumento" => "sco"
    "cita" => "Med Intensiva. 2020;44:321-2"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Images in Intensive Medicine</span>"
      "titulo" => "Malposition of nasogastric tube diagnosed by ultrasound in abdominal surgery patient"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "321"
          "paginaFinal" => "322"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Mala colocaci&#243;n de la sonda nasog&#225;strica diagnosticada por ecograf&#237;a en paciente postoperado de cirug&#237;a abdominal"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:6 [
          "identificador" => "fig0005"
          "etiqueta" => "Figure 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 1073
              "Ancho" => 1500
              "Tamanyo" => 120158
            ]
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "P&#46;E&#46; Edroso Jarne, L&#46; Monge Sola, R&#46; Vicho Pereira"
          "autores" => array:3 [
            0 => array:2 [
              "nombre" => "P&#46;E&#46;"
              "apellidos" => "Edroso Jarne"
            ]
            1 => array:2 [
              "nombre" => "L&#46;"
              "apellidos" => "Monge Sola"
            ]
            2 => array:2 [
              "nombre" => "R&#46;"
              "apellidos" => "Vicho Pereira"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "S0210569119301822"
        "doi" => "10.1016/j.medin.2019.07.003"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569119301822?idApp=WMIE"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300035?idApp=WMIE"
    "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300035/v1_202006090711/en/main.assets"
  ]
  "itemAnterior" => array:19 [
    "pii" => "S2173572720300710"
    "issn" => "21735727"
    "doi" => "10.1016/j.medine.2019.11.006"
    "estado" => "S300"
    "fechaPublicacion" => "2020-06-01"
    "aid" => "1421"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; and SEMICYUC"
    "documento" => "simple-article"
    "crossmark" => 1
    "subdocumento" => "cor"
    "cita" => "Med Intensiva. 2020;44:319-20"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:10 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
      "titulo" => "Big Data Analysis and Machine Learning in Intensive Care Medicine&#58; Identifying new ethical and legal challenges"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "319"
          "paginaFinal" => "320"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "G&#46; Lazcoz Moratinos, I&#46; de Miguel Beriain"
          "autores" => array:2 [
            0 => array:2 [
              "nombre" => "G&#46;"
              "apellidos" => "Lazcoz Moratinos"
            ]
            1 => array:2 [
              "nombre" => "I&#46;"
              "apellidos" => "de Miguel Beriain"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "Traduccion" => array:1 [
      "es" => array:9 [
        "pii" => "S0210569119302736"
        "doi" => "10.1016/j.medin.2019.11.003"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "es"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569119302736?idApp=WMIE"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300710?idApp=WMIE"
    "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300710/v1_202006090711/en/main.assets"
  ]
  "en" => array:12 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
    "titulo" => "In reply to &#8220;Big Data Analysis and Machine Learning in Intensive Care Medicine&#58; Identifying new ethical and legal challenges&#8221;"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:1 [
        "paginaInicial" => "320"
      ]
    ]
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "A&#46; N&#250;&#241;ez Reiz, M&#46; S&#225;nchez Garc&#237;a"
        "autores" => array:2 [
          0 => array:4 [
            "nombre" => "A&#46;"
            "apellidos" => "N&#250;&#241;ez Reiz"
            "email" => array:1 [
              0 => "anunezreiz@gmail.com"
            ]
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0005"
              ]
            ]
          ]
          1 => array:2 [
            "nombre" => "M&#46;"
            "apellidos" => "S&#225;nchez Garc&#237;a"
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "Unidad de Cuidados Intensivos&#44; Hospital Cl&#237;nico San Carlos&#44; Madrid&#44; Spain"
            "identificador" => "aff0005"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Corresponding author&#46;"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "En respuesta a &#171;Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos&#187;"
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">We wish to thank professors Lazcoz Moratinos and de Miguel Beriain for their comments<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">1</span></a>&#46; We fully understand their preoccupation on the scientific and legal challenge posed by the use of artificial intelligence in the management of critically ill patients&#46; However&#44; we wish to make some considerations on this regard&#46;</p><p id="par0010" class="elsevierStylePara elsevierViewall">The clinical decisions made by intensivists are also based on a learning process much like the one used by the algorithm&#46; Also&#44; the concept of &#8220;intuition&#8221; that we use in our daily routine clinical practice could be interpreted as unfounded or unexplained&#44; and yet it is actually based on a process that is similar to that used by artificial intelligence&#46; These decision-making processes are subjective and do not fall within any legal framework&#46; However&#44; in a manner of speaking clinicians are somehow &#8220;natural artificial intelligence&#8221;&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">When doctors use antibiotics&#44; they may not fully understand the molecular mechanisms involved that make the drug kill the bacteria&#46; Although it is desirable that the mechanism of action and &#8220;biological plausibility&#8221; are known&#44; if clinical studies with enough numbers of patients shows that the use of antibiotics improves the diagnosis of the patient&#44; using them is completely justified&#46; Fleming did not know how penicillin worked when he started using it&#46; But also&#44; antibiotics can have side effects and even death in very isolated cases&#46; Should we then stop using them&#63;</p><p id="par0020" class="elsevierStylePara elsevierViewall">The excessively rigorous implementation of the regulatory framework in the management of data in clinical studies is already having negative consequences in the progression of conditions like Alzheimer&#39;s disease or diabetes<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">2</span></a>&#46; A reasonable regulatory framework would give artificial intelligence the same recognition antibiotics and other drugs have and require the same verification procedures of their safety and efficacy in clinical trials&#46; However&#44; if the use of an artificial intelligence-based algorithm for the management of shock in septic patients would positively improve mortality with fewer side effects in clinical trials&#44; should we stop using it simply because the clinician does not exactly understand how it works&#63; This degree of demand is not applied to other novel therapies especially assuming the human cost associated with living without new therapeutic tools like this one&#46;</p><p id="par0025" class="elsevierStylePara elsevierViewall">Also&#44; progress is being made trying to understand the &#8220;reasoning&#8221; processes behind artificial intelligence-based tools<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">3</span></a> &#40;similar to those used to understand how pencillin broke the bacterial wall&#41; to a point that a few years from now we may be able to understand why algorithms make this or that decision&#46;</p><p id="par0030" class="elsevierStylePara elsevierViewall">Artificial intelligence can be a very useful tool in the coming future and improve our management of critically ill patients&#46; As a matter of fact&#44; it is already being used in other specialties<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">4</span></a>&#46; We hereby recommend not doing a disservice to ourselves with extreme legal arguments of protecting patients who would probably suffer the consequences of certain therapeutic opportunities derived from the use of artificial intelligence taken away from them&#46; With a very demanding legal framework we would still die of pneumonia for not being able to use penicillin&#46;</p></span>"
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "NotaPie" => array:1 [
      0 => array:2 [
        "etiqueta" => "&#9734;"
        "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as&#58; N&#250;&#241;ez Reiz A&#44; S&#225;nchez Garc&#237;a M&#46; En respuesta a &#171;Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos&#187;&#46; Med Intensiva&#46; 2020&#59;44&#58;320&#8211;320&#46;</p>"
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0015"
          "bibliografiaReferencia" => array:4 [
            0 => array:3 [
              "identificador" => "bib0025"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Big Data Analysis y Machine Learning en medicina intensiva&#58; identificando nuevos retos &#233;tico-jur&#237;dicos"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "G&#46; Lazcoz Moratinos"
                            1 => "I&#46; de Miguel Beriain"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.medin.2019.11.003"
                      "Revista" => array:3 [
                        "tituloSerie" => "Med Intensiva"
                        "fecha" => "2017"
                        "volumen" => "44"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Researchers sound alarm on European data law"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "T&#46; Rabesandratana"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1126/science.366.6468.936"
                      "Revista" => array:5 [
                        "tituloSerie" => "Science"
                        "fecha" => "2019"
                        "volumen" => "366"
                        "paginaInicial" => "936"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31753976"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:1 [
                      "titulo" => "Explainable and interpretable models in computer vision and machine learning"
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Libro" => array:3 [
                        "fecha" => "2018"
                        "editorial" => "Springer Science&#43;Business Media"
                        "editorialLocalizacion" => "New York&#44; NY"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Deep learning applications in ophthalmology"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "E&#46; Rahimy"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1097/ICU.0000000000000470"
                      "Revista" => array:6 [
                        "tituloSerie" => "Curr Opin Ophthalmol"
                        "fecha" => "2018"
                        "volumen" => "29"
                        "paginaInicial" => "254"
                        "paginaFinal" => "260"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29528860"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/21735727/0000004400000005/v1_202006090711/S2173572720300722/v1_202006090711/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "64604"
    "tipo" => "SECCION"
    "en" => array:2 [
      "titulo" => "Letters to the Editor"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "en"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/21735727/0000004400000005/v1_202006090711/S2173572720300722/v1_202006090711/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173572720300722?idApp=WMIE"
]
Article information
ISSN: 21735727
Original language: English
The statistics are updated each day
Year/Month Html Pdf Total
2024 November 3 6 9
2024 October 37 30 67
2024 September 35 31 66
2024 August 45 34 79
2024 July 26 22 48
2024 June 33 39 72
2024 May 31 29 60
2024 April 36 26 62
2024 March 28 30 58
2024 February 21 35 56
2024 January 32 34 66
2023 December 22 41 63
2023 November 32 39 71
2023 October 24 26 50
2023 September 25 39 64
2023 August 17 18 35
2023 July 27 20 47
2023 June 23 13 36
2023 May 28 34 62
2023 April 17 12 29
2023 March 28 24 52
2023 February 25 24 49
2023 January 21 15 36
2022 December 39 26 65
2022 November 38 28 66
2022 October 54 31 85
2022 September 56 29 85
2022 August 72 39 111
2022 July 62 34 96
2022 June 23 27 50
2022 May 27 28 55
2022 April 19 29 48
2022 March 29 50 79
2022 February 20 28 48
2022 January 26 28 54
2021 December 32 42 74
2021 November 20 35 55
2021 October 44 68 112
2021 September 17 32 49
2021 August 21 26 47
2021 July 17 21 38
2021 June 21 20 41
2021 May 19 38 57
2021 April 63 79 142
2021 March 41 27 68
2021 February 31 26 57
2021 January 43 25 68
2020 December 41 14 55
2020 November 16 13 29
2020 October 15 9 24
2020 July 50 9 59
2020 June 72 17 89
2020 May 17 13 30
2020 April 27 9 36
Show all

Follow this link to access the full text of the article

Idiomas
Medicina Intensiva (English Edition)
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?