Información de la revista
Vol. 24. Núm. 7.
Páginas 293-299 (octubre 2000)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 24. Núm. 7.
Páginas 293-299 (octubre 2000)
Acceso a texto completo
Monitorización no invasiva de la PaCO2 en pacientes críticos con ventilación mecánica
Noninvasive monitorization of PaCO2 in critically ill ventilated patients
Visitas
41605
J. Peláez Fernández1, V. Cerdeño Impuesto, M. Jiménez Lendínez
Servicio de Medicina Intensiva. Hospital Universitario La Paz. Madrid
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Objetivo

Determinar la presión arterial de dioxide de carbono, en pacientes con soporte ventilatorio completo, mediante dos técnicas de monitorización no invasivas, la calorimetría indirecta (eliminación de CO2) y la capniografía (presión teleespiratoria de CO2). Comparar sus resultados frente a los obtenidos mediante la extracción de gasometrías arteriales

Métodos

Veinte pacientes en ventilación mecánica, sometidos a un cambio en el volumen ventilatorio, fueron monitorizados con un computador metabólico (Deltatrac) y un capniógrafo. Se determinaron las siguientes variables antes y después del cambio ventilatorio: eliminación de CO2 (VeCO2), consumo de oxígeno, PETCO2 y PaCO2 (gasometría arterial). Se calcularon los nuevos niveles de PaCO2 mediante calorimetría indirecta utilizando PaCO2-final = PaCO2-basal ´ VeCO2-basal/VeCO2-1 minuto, y mediante capniografía, utilizando PaCO2-final = PETCO2-final + Grad (PaCO2-PETCO2)

Resultados

Los niveles de PaCO2 obtenidos mediante calorimetría indirecta fueron de 37 (DE 5,2) mmHg y mediante la PETCO2 de 35,4 (8,3) mmHg; tras la extracción de gases arteriales los niveles fueron de 37,1 (6,4) mmHg y 37,2 (6,7) mmHg, respectivamente. La correlación entre la PaCO2 calculada y la medida mediante gasometrías arteriales fue de r = 0,93 (p <0,001) para la calorimetría indirecta y de r = 0,55 (p <0,05) para la PETCO2. En el análisis de concordancia de ambas técnicas frente a la gasometría arterial los límites de acuerdo fueron más estrechos para la calorimetría indirecta (–5,11/5,31 mmHg frente a –12,35/16,07 mmHg, margen de confianza del 95%)

Conclusiones

En nuestro estudio se confirma la escasa utilidad de la PETCO2 para la determinación de los cambios sufridos por la PaCO2 en pacientes críticos en los que se han variado los parámetros ventilatorios

Palabras clave:
calorimetría indirecta
presión arterial de PaCO2
eliminación de CO2
ventilación mecánica
presión teleespiratoria de CO2
Objective

To determine the arterial pressure of carbon dioxide, in critically ill patients with full support ventilation, through two noninvasive monitoring methods, indirect calorimetry (CO2 elimination) and capnography (end tidal CO2). To compare its results with the results obtained through the analysis of arterial blood gases

Methods

Twenty mechanically ventilated patients, submitted to a change in minute volume ventilation, were monitored with a metabolic cart (Deltatrac) and a CO2 analyzer. We measured, before and after ventilatory resetting: CO2 elimination (VeCO2), oxygen consumption, PETCO2 and PaCO2 (blood gases). We calculated the new values of PaCO2 through indirect calorimetry using PaCO2-final = PaCO2-basal ´ VeCO2-basal / VeCO2-1 minute, and through capnography using PaCO2-final = PETCO2-final + Grad (PaCO2-PETCO2)

Results

The calculated PaCO2 through indirect calorimetry was 37(5.2) mmHg, and through PETCO2 was 35.4(8.3) mmHg; after blood gas analysis the new levels were 37.1(6.4) mmHg and 37.2(6.7) mmHg, respectively. The correlation among calculated PaCO2 and measured through blood gas analysis were: r = 0.93 (p <0.001) for indirect calorimetry, and r = 0.55 (p <0.05) for PETCO2. The limits of agreement of both techniques compared with arterial blood gas analysis were more narrow for indirect calorimetry (–5.11/5.31 mmHg vs –12.35/16.07 mmHg, 95% confidence interval)

Conclusions

Our results confirm the little usefulness of PETCO2 for determining the PaCO2 changes in critical patients in which ventilatory parameters were reseted

Key words:
Indirect calorimetry
arterial pressure CO2
CO2 elimination
mechanical ventilation
end tidal CO2
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.J. Marini, J. Truwit.
Monitoring the respiratory system.
Principles of critical care, pp. 131-154
[2.]
J. Popovich.
Mechanical ventilation: keeping all systems ‘go’.
J Respir Dis, 6 (1985), pp. 69-83
[3.]
A. Jubran, M.J. Tobin.
Monitoring gas exchange during mechanical ventilation.
Principles and Practice of mechanical ventilation, pp. 919-943
[4.]
J.F. Nunn.
Carbon dioxide.
Applied respiratory physiology, pp. 219-246
[5.]
R. Solis, C. Anselmi, M. Lavietes, A. Khan.
Rate of decay or increment of PaO2 following a change in supplemental oxygen in mechanically ventilated patients with diffuse pneumonia.
Chest, 103 (1993), pp. 554-556
[6.]
J. Peláez, M. Jiménez, M.J. Asensio, J. López, M.A. Arce, S. Yus.
Estimación de la PCO2 arterial mediante calorimetría indirecta durante la ventilación mecánica.
Med Intensiva, 21 (1997), pp. 91-95
[07.]
J.M. Bland, D.G. Altman.
Statistical methods for assessing agreement between two methods of clinical measurement.
Lancet, 1 (1986), pp. 307-310
[08.]
P.A. Mc Lellan, R.S. Goldstein, V. Ramcharan, A.S. Rebuck.
Transcutaneous carbon dioxide monitoring.
Am Rev Respir Dis, 124 (1981), pp. 199-201
[09.]
B.W. Palmisano, J.W. Severinghaus.
Transcutaneous PCO2 and PO2: a multicenter study of accuracy.
J Clin Monit, 6 (1990), pp. 189-195
[10.]
K.K. Tremper, W.C. Shoemaker.
Transcutaneous oxygen monitoring of critically ill adults, with and without low flow shock.
Crit Care Med, 9 (1981), pp. 706-709
[11.]
R.J. Martin.
Transcutaneous monitoring: instrumentation and clinical aplications.
Respir Care, 35 (1990), pp. 577-583
[12.]
A.S. Rebuck, K.R. Chapman.
Measurement and monitoring of exhaled carbon dioxide.
Noninvasive respiratory monitoring, pp. 189-201
[13.]
J.F. Nunn, D.W. Hill.
Respiratory dead space and arterial to end-tidal CO2 tension difference in anesthetized man.
J Appl Physiol, 15 (1960), pp. 383-389
[14.]
J.H. Healey, A.J. Fedullo, A.J. Swinburne, G.W. Wahl.
Comparison of noninvasive measurements of carbon dioxide tension during withdrawal from mechanical ventilation.
Crit Care Med, 15 (1987), pp. 764-768
[15.]
M.K. Yamanaka, D.Y. Sue.
Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure.
Chest, 95 (1987), pp. 832-835
[16.]
S.S. Moorthy, A.M. Losasso, J. Wilcox.
End-tidal PCO2 greater than PaCO2.
Crit Care Med, 12 (1984), pp. 534-535
[17.]
R.A. Hoffman, B.P. Krieger, M.R. Kramer, S. Segel, F. Bizousky, H. Gazeroglu, et al.
End-tidal carbon dioxide in critically ill patients during changes in mechanical ventilation.
Am Rev Respir Dis, 140 (1989), pp. 1265-1268
[18.]
D. Hess, A. Schlottag, B. Levin, J. Mathai, W.O. Rexrode.
An evaluation of the usefulness of end-tidal PCO2 to aid weaning from mechanical ventilation following cardiac surgery.
Respir Care, 36 (1991), pp. 837-843
[19.]
L. Hatle, R. Rokseth.
The arterial to end-expiratory carbon dioxide tension gradient in acute pulmonary embolism and other cardiopulmonary diseases.
Chest, 66 (1974), pp. 352-357
[20.]
Y. Shimada, I. Yoshiya, K. Tanaka, S. Sone, M. Sakurai.
Evaluation of the progress and prognosis of adult respiratory distress syndrome. Simple respiratory physiologic measurement.
Chest, 76 (1979), pp. 180-186
[21.]
L. McNabb, T. Globerson, R. St Clair, A.F. Wilson.
The arterial-end tidal CO2 difference in patients on ventilators.
Chest, 80 (1981), pp. 381
[22.]
S.S. Moorthy, A.M. Losasso, J. Wilcox.
End-tidal PCO2 greater than PaCO2.
Crit Care Med, 12 (1984), pp. 534-535
[23.]
M.K. Yamanaka, D.Y. Sue.
Comparison of arterial-end-tidal PCO2 difference and dead space/tidal volume ratio in respiratory failure.
Chest, 92 (1987), pp. 832-835
[24.]
J. Zupan, M. Martin, J.L. Benumof.
End-tidal CO2 excretion waveform and error with gas sampling line leak.
Anesth Analg, 67 (1988), pp. 579-581
[25.]
J.M. Badgewell, M.E. McLeod, J. Lerman, R.E. Creighton.
End-tidal PCO2 measurements sampled at the distal and proximal ends of the endotracheal tube in infants and children.
Anesth Analg, 66 (1987), pp. 959-964
[26.]
S. Bursztein, D.H. Elwyn, J. Askanazi, J.M. Kinney.
Williams & Wilkins, (1989),
[27.]
G. Livesey, M. Elia.
Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels.
Am J Clin Nutr, 47 (1988), pp. 608-628
[28.]
S. Hennenberg, D. Söderberg, T. Groth, H. Stjernström, L. Wiklund.
Carbon dioxide production during mechanical ventilation.
Crit Care Med, 15 (1987), pp. 8-13
[29.]
K.N. Apelgren, J.L. Rombeau, P.L. Twomey, R.A. Miller.
Comparison of nutritional indices and outcome in critically ill patients.
Crit Care Med, 10 (1982), pp. 305-307
[30.]
J. Askanazi, S.H. Rosenbaum, A.I. Hyman, P.A. Silverberg, J. Milic-Emili, J.M. Kinney.
Respiratory changes induced by the large glucose loads of total parenteral nutrition.
JAMA, 243 (1980), pp. 1444-1447
[31.]
H.D. Cowelli, J.W. Black, M.S. Olsen, J.F. Beekman.
Respiratory failure precipitated by high carbohydrate loads.
Ann Intern Med, 95 (1981), pp. 579
[32.]
L.J.K. Makk, S.A. Mc Clave, P.W. Creech, D.R. Johnson, A.F. Short, N.L. Whitlow, et al.
Clinical application of the metabolic cart to the delivery of total parenteral nutrition.
Crit Care Med, 18 (1990), pp. 1320-1327
[33.]
K. Hankeln, H. Michelsen, V. Kubiak, M. Beez, F. Boehmert.
Continuous, on-line, real-time measurement of cardiac output and derived cardiorespiratory variables in the critically ill.
Crit Care Med, 13 (1985), pp. 1071-1073
[34.]
J. Takala, O. Keinänen, P. Väisänen, A. Kari.
Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device.
Crit Care Med, 17 (1989), pp. 1041-1047
[35.]
R. Kiiski, J. Takala, T. Eissa.
Measurement of alveolar ventilation and changes in deadspace by indirect calorimetry during mechanical ventilation: a laboratory and clinical validation.
Crit Care Med, 19 (1991), pp. 1303-1309
[36.]
V. Taskar, J. John, A. Larsson, T. Wetterberg, B. Johnson.
Dynamics of carbon dioxide elimination following ventilator resetting.
Chest, 108 (1995), pp. 196-202
[37.]
L. Lum, A. Saville, T. Shekhar.
Accuracy of physiologic dead space (Vd/Vt) measured in intubated pediatric patients using a metabolic monitor. Comparison with the Douglas bag method.
Crit Care Med, 25 (1997), pp. 102
[38.]
J. Peláez, M.J. Asensio, M. Sánchez, A. García, M. Jiménez.
Aplicaciones no metabólicas de la calorimetría indirecta.
Nutr Hosp, 14 (1999), pp. 23-30
[39.]
J.M. Sánchez.
Valoración del gasto energético en enfermos críticos.
Nutrición artificial en reanimación,
Copyright © 2000. Sociedad Española de Medicina Intensiva, Critica y Unidades Coronarias (SEMICYUC) and Elsevier España, S.L.
Descargar PDF
Idiomas
Medicina Intensiva
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?