array:23 [
  "pii" => "S0210569121001121"
  "issn" => "02105691"
  "doi" => "10.1016/j.medin.2021.05.007"
  "estado" => "S300"
  "fechaPublicacion" => "2022-03-01"
  "aid" => "1674"
  "copyright" => "Elsevier España, S.L.U. y SEMICYUC"
  "copyrightAnyo" => "2021"
  "documento" => "simple-article"
  "crossmark" => 1
  "subdocumento" => "cor"
  "cita" => "Med Intensiva. 2022;46:175"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "itemSiguiente" => array:18 [
    "pii" => "S0210569119303031"
    "issn" => "02105691"
    "doi" => "10.1016/j.medin.2019.11.011"
    "estado" => "S300"
    "fechaPublicacion" => "2022-03-01"
    "aid" => "1434"
    "copyright" => "Elsevier España, S.L.U. y SEMICYUC"
    "documento" => "article"
    "crossmark" => 1
    "subdocumento" => "sco"
    "cita" => "Med Intensiva. 2022;46:176"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Images in Intensive Medicine</span>"
      "titulo" => "Meningeal empyema"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:1 [
          "paginaInicial" => "176"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Empiema meningeo"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:6 [
          "identificador" => "fig0005"
          "etiqueta" => "Figure 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 916
              "Ancho" => 800
              "Tamanyo" => 160384
            ]
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "N&#46;A&#46; Gemelli, N&#46;M&#46; Ciarrocchi, E&#46; San Roman"
          "autores" => array:3 [
            0 => array:2 [
              "nombre" => "N&#46;A&#46;"
              "apellidos" => "Gemelli"
            ]
            1 => array:2 [
              "nombre" => "N&#46;M&#46;"
              "apellidos" => "Ciarrocchi"
            ]
            2 => array:2 [
              "nombre" => "E&#46;"
              "apellidos" => "San Roman"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569119303031?idApp=WMIE"
    "url" => "/02105691/0000004600000003/v1_202202250826/S0210569119303031/v1_202202250826/en/main.assets"
  ]
  "itemAnterior" => array:18 [
    "pii" => "S0210569121001017"
    "issn" => "02105691"
    "doi" => "10.1016/j.medin.2021.05.002"
    "estado" => "S300"
    "fechaPublicacion" => "2022-03-01"
    "aid" => "1666"
    "copyright" => "Elsevier Espa&#241;a&#44; S&#46;L&#46;U&#46; y SEMICYUC"
    "documento" => "simple-article"
    "crossmark" => 1
    "subdocumento" => "cor"
    "cita" => "Med Intensiva. 2022;46:173-4"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "en" => array:11 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
      "titulo" => "Decibans&#58; It is time to weigh the evidence about diagnostic accuracy"
      "tienePdf" => "en"
      "tieneTextoCompleto" => "en"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "173"
          "paginaFinal" => "174"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "es" => array:1 [
          "titulo" => "Decibanes&#58; es hora de sopesar la evidencia sobre la exactitud diagn&#243;stica"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "en" => true
      ]
      "contienePdf" => array:1 [
        "en" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0005"
          "etiqueta" => "Figure 1"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr1.jpeg"
              "Alto" => 1784
              "Ancho" => 2925
              "Tamanyo" => 284456
            ]
          ]
          "descripcion" => array:1 [
            "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Weights of evidence of four scales for the diagnosis of massive bleeding in trauma patients&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "V&#46; Modesto i Alapont, A&#46; Medina-Villanueva"
          "autores" => array:2 [
            0 => array:2 [
              "nombre" => "V&#46;"
              "apellidos" => "Modesto i Alapont"
            ]
            1 => array:2 [
              "nombre" => "A&#46;"
              "apellidos" => "Medina-Villanueva"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "en"
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569121001017?idApp=WMIE"
    "url" => "/02105691/0000004600000003/v1_202202250826/S0210569121001017/v1_202202250826/en/main.assets"
  ]
  "en" => array:12 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">Letter to the Editor</span>"
    "titulo" => "Reply to &#8220;Decibans&#58; it is time to weight the evidence about diagnostic accuracy&#8221;"
    "tieneTextoCompleto" => true
    "saludo" => "Dear Editor&#58;"
    "paginas" => array:1 [
      0 => array:1 [
        "paginaInicial" => "175"
      ]
    ]
    "autores" => array:1 [
      0 => array:3 [
        "autoresLista" => "C&#46; Ramos-Vera"
        "autores" => array:1 [
          0 => array:3 [
            "nombre" => "C&#46;"
            "apellidos" => "Ramos-Vera"
            "email" => array:1 [
              0 => "cristony_777@hotmail.com"
            ]
          ]
        ]
        "afiliaciones" => array:1 [
          0 => array:2 [
            "entidad" => "&#193;rea de investigaci&#243;n&#44; Facultad de Ciencias de la Salud&#44; Universidad Cesar Vallejo&#44; Lima&#44; Peru"
            "identificador" => "aff0005"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "es" => array:1 [
        "titulo" => "Respuesta a &#171;Decibanes&#58; es hora de pesar la evidencia sobre exactitud diagn&#243;stica&#187;"
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">I have read with great interest the letter by Modesto and Medina-Villanueva<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">1</span></a> on the proposed use of weights of evidence and decibans measures in intensive care medicine research&#44; and I agree with such methodological reflection where such probability estimates allow better intuition in the confirmation of clinical results&#44; similar to Bayes factor &#40;BF&#41; values&#46;<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">2</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">The BF is ideally suited to strengthen various statistical conclusions from clinical data&#46; For example&#44; it is useful for diagnostic prediction investigations such as the one referred by Modesto and Medina-Villanueva<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">1</span></a> where area under the ROC curve &#40;AUROC&#41; findings are reported&#44; these values can be converted to effect size &#40;ES&#59; e&#46;g&#46;&#44; OR&#44; <span class="elsevierStyleItalic">d</span>&#44; <span class="elsevierStyleItalic">r</span>&#41;<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">3</span></a> to estimate the degree of probative strength of this diagnostic test given the data&#46;<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">2</span></a> Likewise&#44; it is possible to consider the AUROC cutoff point &#40;0&#46;5&#41; as an important inclusive value in the Bayesian intervals &#40;BI&#41; of the convertible effect &#40;<span class="elsevierStyleItalic">r</span>&#41; of the AUROC to provide greater certainty in the interpretation of the existence of the 95&#37; probability of finding such a measure of interest among such BIs given the data&#46; This is essential to enhance the credibility and replicability of diagnostic studies using the AUROC&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">Convertible ES are essential for the integration of future diagnostic prediction meta-analyses with the alternative of establishing adequate heterogeneity &#40;variability of effects&#41;&#44; for example&#44; if a study with binary ES &#40;OR&#41; does not present adequate heterogeneity&#44; it has the option of using another standardized ES &#40;correlation coefficient or standardized mean difference&#41;&#46;<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">3</span></a></p><p id="par0020" class="elsevierStylePara elsevierViewall">Another Bayesian model of interest is the Bayesian A&#47;B test that contrasts the difference between two proportions of two different groups considering the assignment of prior distributions and the control of such sample data&#46;<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">4</span></a> Simultaneously it evaluates how likely it is that such events occur according to the logarithmic likelihood ratio scale &#40;log<span class="elsevierStyleHsp" style=""></span>OR<span class="elsevierStyleHsp" style=""></span>&#60;<span class="elsevierStyleHsp" style=""></span>0&#44; log<span class="elsevierStyleHsp" style=""></span>OR<span class="elsevierStyleHsp" style=""></span>&#62;<span class="elsevierStyleHsp" style=""></span>0&#41;&#46; This measure is most useful because it fits a normal distribution for simultaneous assessment&#44; which starts with equal odds for both proportions &#40;equal prior distributions&#41;&#44; then proceeds to analyze the pooled data by contrasting the BF towards both events &#40;log<span class="elsevierStyleHsp" style=""></span>OR<span class="elsevierStyleHsp" style=""></span>&#60;<span class="elsevierStyleHsp" style=""></span>0&#44; log<span class="elsevierStyleHsp" style=""></span>OR<span class="elsevierStyleHsp" style=""></span>&#62;<span class="elsevierStyleHsp" style=""></span>0&#41;&#46; It is possible to determine the quantitative weight of evidence in a similar way as referred to in the commented article1 by multiplying 10 by the logarithmic scale of the BF to confirm decisive evidence &#40;values greater than 20&#41; of the higher frequency group &#40;log OR &#62; 0&#41;&#44; and even to reporte the negative decisive evidence of the other clinical event &#40;logOR&#60;0&#41;&#46; In addition&#44; it allows establishing the posterior probability &#40;this measure is stable beyond the reporting of more data&#41; given the transformation of the obtained ES&#58; exp &#40;log<span class="elsevierStyleHsp" style=""></span>OR&#41;<span class="elsevierStyleHsp" style=""></span>&#61;<span class="elsevierStyleHsp" style=""></span>OR&#44; and OR to probability<span class="elsevierStyleHsp" style=""></span>&#61;<span class="elsevierStyleHsp" style=""></span>OR&#47;&#40;OR<span class="elsevierStyleHsp" style=""></span>&#43;<span class="elsevierStyleHsp" style=""></span>1&#41; and their respective intervals to report what are realistic probabilities of participants having such medical outcomes beyond significance values&#46;<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">4</span></a> This is useful for estimating COVID-19 infection rates according to groups and comorbid clinical conditions&#44;<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">4</span></a> such as the study replicated by Ramos-Vera<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">2</span></a> where the comparison of the proportions of cases &#40;COVID-19 infected patients&#41; and controls &#40;healthy adults&#41; reporting measures of human leukocyte antigen &#40;HLA&#41; genetic polymorphisms was evaluated&#44; following the recommendation of the Bayesian Neurology Group-Texas &#40;BNG-TX&#41;4&#46; Bayesian models are also essential in the development of clinical trials in acute care research&#46;<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">5</span></a> Therefore&#44; the joint application with other measures such as weights of evidence and decibans are essential to methodologically strengthen greater practical credibility in intensive care medicine research and by COVID-19&#46;</p></span>"
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "bibliografia" => array:2 [
      "titulo" => "References"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0015"
          "bibliografiaReferencia" => array:5 [
            0 => array:3 [
              "identificador" => "bib0030"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Decibans&#58; it is time to weight the evidence about diagnostic accuracy"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:2 [
                            0 => "V&#46; Modesto"
                            1 => "A&#46; Medina-Villanueva"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:5 [
                        "tituloSerie" => "Med Intensiva"
                        "fecha" => "2022"
                        "volumen" => "46"
                        "paginaInicial" => "173"
                        "paginaFinal" => "174"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0035"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Uso inclusivo de la conversi&#243;n del tama&#241;o de efecto y del factor Bayes en la investigaci&#243;n de medicina intensiva"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "C&#46; Ramos-Vera"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:5 [
                        "tituloSerie" => "Med Intensiva"
                        "fecha" => "2022"
                        "volumen" => "46"
                        "paginaInicial" => "171"
                        "paginaFinal" => "172"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0040"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Transforming the Area under the Normal Curve &#40;AUC&#41; into Cohen&#39;s <span class="elsevierStyleItalic">d</span>&#44; Pearson&#39;s rpb&#44; Odds-Ratio&#44; and Natural Log Odds-Ratio&#58; two conversion tables"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:1 [
                            0 => "J&#46;F&#46; Salgado"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.5093/ejpalc.2018.5"
                      "Revista" => array:5 [
                        "tituloSerie" => "J Eur Psychol Appl Legal Con"
                        "fecha" => "2018"
                        "volumen" => "10"
                        "paginaInicial" => "35"
                        "paginaFinal" => "47"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0045"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "COVID-19 encephalopathy&#44; Bayes rule&#44; and a plea for case-control studies"
                      "autores" => array:1 [
                        0 => array:3 [
                          "colaboracion" => "Bayesian Neurology Group-Texas &#40;BNG-TX&#41;"
                          "etal" => false
                          "autores" => array:4 [
                            0 => "E&#46; Arbona-Haddad"
                            1 => "I&#46;W&#46; Tremont-Lukats"
                            2 => "B&#46; Gogia"
                            3 => "P&#46;K&#46; Rai"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1002/acn3.51288"
                      "Revista" => array:6 [
                        "tituloSerie" => "Ann Clin Transl Neurol"
                        "fecha" => "2021"
                        "volumen" => "8"
                        "paginaInicial" => "723"
                        "paginaFinal" => "725"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33512092"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0050"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Using Bayesian Methods to Augment the Interpretation of Critical Care Trials&#46; An overview of theory and example reanalysis of the alveolar recruitment for Acute Respiratory Distress Syndrome Trial"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:5 [
                            0 => "F&#46;G&#46; Zampieri"
                            1 => "J&#46;D&#46; Casey"
                            2 => "M&#46; Shankar-Hari"
                            3 => "F&#46;E&#46; Harrell Jr&#46;"
                            4 => "M&#46;O&#46; Harhay"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1164/rccm.202006-2381CP"
                      "Revista" => array:6 [
                        "tituloSerie" => "Am J Respir Crit Care Med"
                        "fecha" => "2021"
                        "volumen" => "203"
                        "paginaInicial" => "543"
                        "paginaFinal" => "552"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33270526"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
  ]
  "idiomaDefecto" => "en"
  "url" => "/02105691/0000004600000003/v1_202202250826/S0210569121001121/v1_202202250826/en/main.assets"
  "Apartado" => array:4 [
    "identificador" => "57221"
    "tipo" => "SECCION"
    "es" => array:2 [
      "titulo" => "Cartas al Editor"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "es"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/02105691/0000004600000003/v1_202202250826/S0210569121001121/v1_202202250826/en/main.pdf?idApp=WMIE&text.app=https://medintensiva.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0210569121001121?idApp=WMIE"
]
Compartir
Información de la revista
Vol. 46. Núm. 3.
Páginas 175 (marzo 2022)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 46. Núm. 3.
Páginas 175 (marzo 2022)
Letter to the Editor
Acceso a texto completo
Reply to “Decibans: it is time to weight the evidence about diagnostic accuracy”
Respuesta a «Decibanes: es hora de pesar la evidencia sobre exactitud diagnóstica»
Visitas
2080
C. Ramos-Vera
Área de investigación, Facultad de Ciencias de la Salud, Universidad Cesar Vallejo, Lima, Peru
Este artículo ha recibido
Información del artículo
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Texto completo
Dear Editor:

I have read with great interest the letter by Modesto and Medina-Villanueva1 on the proposed use of weights of evidence and decibans measures in intensive care medicine research, and I agree with such methodological reflection where such probability estimates allow better intuition in the confirmation of clinical results, similar to Bayes factor (BF) values.2

The BF is ideally suited to strengthen various statistical conclusions from clinical data. For example, it is useful for diagnostic prediction investigations such as the one referred by Modesto and Medina-Villanueva1 where area under the ROC curve (AUROC) findings are reported, these values can be converted to effect size (ES; e.g., OR, d, r)3 to estimate the degree of probative strength of this diagnostic test given the data.2 Likewise, it is possible to consider the AUROC cutoff point (0.5) as an important inclusive value in the Bayesian intervals (BI) of the convertible effect (r) of the AUROC to provide greater certainty in the interpretation of the existence of the 95% probability of finding such a measure of interest among such BIs given the data. This is essential to enhance the credibility and replicability of diagnostic studies using the AUROC.

Convertible ES are essential for the integration of future diagnostic prediction meta-analyses with the alternative of establishing adequate heterogeneity (variability of effects), for example, if a study with binary ES (OR) does not present adequate heterogeneity, it has the option of using another standardized ES (correlation coefficient or standardized mean difference).3

Another Bayesian model of interest is the Bayesian A/B test that contrasts the difference between two proportions of two different groups considering the assignment of prior distributions and the control of such sample data.4 Simultaneously it evaluates how likely it is that such events occur according to the logarithmic likelihood ratio scale (logOR<0, logOR>0). This measure is most useful because it fits a normal distribution for simultaneous assessment, which starts with equal odds for both proportions (equal prior distributions), then proceeds to analyze the pooled data by contrasting the BF towards both events (logOR<0, logOR>0). It is possible to determine the quantitative weight of evidence in a similar way as referred to in the commented article1 by multiplying 10 by the logarithmic scale of the BF to confirm decisive evidence (values greater than 20) of the higher frequency group (log OR > 0), and even to reporte the negative decisive evidence of the other clinical event (logOR<0). In addition, it allows establishing the posterior probability (this measure is stable beyond the reporting of more data) given the transformation of the obtained ES: exp (logOR)=OR, and OR to probability=OR/(OR+1) and their respective intervals to report what are realistic probabilities of participants having such medical outcomes beyond significance values.4 This is useful for estimating COVID-19 infection rates according to groups and comorbid clinical conditions,4 such as the study replicated by Ramos-Vera2 where the comparison of the proportions of cases (COVID-19 infected patients) and controls (healthy adults) reporting measures of human leukocyte antigen (HLA) genetic polymorphisms was evaluated, following the recommendation of the Bayesian Neurology Group-Texas (BNG-TX)4. Bayesian models are also essential in the development of clinical trials in acute care research.5 Therefore, the joint application with other measures such as weights of evidence and decibans are essential to methodologically strengthen greater practical credibility in intensive care medicine research and by COVID-19.

References
[1]
V. Modesto, A. Medina-Villanueva.
Decibans: it is time to weight the evidence about diagnostic accuracy.
Med Intensiva, 46 (2022), pp. 173-174
[2]
C. Ramos-Vera.
Uso inclusivo de la conversión del tamaño de efecto y del factor Bayes en la investigación de medicina intensiva.
Med Intensiva, 46 (2022), pp. 171-172
[3]
J.F. Salgado.
Transforming the Area under the Normal Curve (AUC) into Cohen's d, Pearson's rpb, Odds-Ratio, and Natural Log Odds-Ratio: two conversion tables.
J Eur Psychol Appl Legal Con, 10 (2018), pp. 35-47
[4]
E. Arbona-Haddad, I.W. Tremont-Lukats, B. Gogia, P.K. Rai, Bayesian Neurology Group-Texas (BNG-TX).
COVID-19 encephalopathy, Bayes rule, and a plea for case-control studies.
Ann Clin Transl Neurol, 8 (2021), pp. 723-725
[5]
F.G. Zampieri, J.D. Casey, M. Shankar-Hari, F.E. Harrell Jr., M.O. Harhay.
Using Bayesian Methods to Augment the Interpretation of Critical Care Trials. An overview of theory and example reanalysis of the alveolar recruitment for Acute Respiratory Distress Syndrome Trial.
Am J Respir Crit Care Med, 203 (2021), pp. 543-552
Copyright © 2021. Elsevier España, S.L.U. y SEMICYUC
Descargar PDF
Idiomas
Medicina Intensiva
Opciones de artículo
Herramientas