To describe the lung pathological changes in influenza A (H1N1) viral pneumonia. We studied morphological changes, nitro-oxidative stress and the presence of viral proteins in lung tissue. Methods and patients: Light microscopy was used to examine lung tissue from 6 fatal cases of pandemic influenza A (H1N1) viral pneumonia. Fluorescence for oxidized dihydroethy-dium, nitrotyrosine, inducible NO synthase (NOS2) and human influenza A nucleoprotein (NP) (for analysis under confocal microscopy) was also studied in lung tissue specimens. Results: Age ranged from 15 to 50 years. Three patients were women, and 5 had preexisting medical conditions. Diffuse alveolar damage (DAD) was present in 5 cases (as evidenced by hya-line membrane formation, alveolo-capillary wall thickening and PMN infiltrates), and interstitial fibrosis in one case. In the fluorescence studies there were signs of oxygen radical generation, increased NOS2 protein and protein nitration in lung tissue samples, regardless of the duration of ICU admission. Viral NP was found in lung tissue samples from three patients. Type I pneu-mocytes and macrophages harbored viral NP, as evidenced by confocal immunofluorescence microscopy.Conclusions Lung tissue from patients with pandemic influenza A (H1N1) viral pneumonia shows histological findings consistent with DAD. Prolonged nitro-oxidative stress is present despite antiviral treatment. Viral proteins may remain in lung tissue for prolonged periods of time, lodged in macrophages and type I pneumocytes.
Journal Information
Vol. 36. Issue 1.
Pages 24-31 (January - February 2012)
Visits
1097
Vol. 36. Issue 1.
Pages 24-31 (January - February 2012)
Full text access
Lung histopathological findings in fatal pandemic influenza A (H1N1)
Visits
1097
N. Nina,b, C. Sánchez-Rodrígueza,b, L.S. Verb,c, P. Cardinald, A. Ferrueloa,b, L. Sotoe, A. Deicasd, N. Camposf, O. Rochag, D.H. Cerasoh, M. El-Assara,b, J. Ortínb,c, P. Fernández-Segovianoa,b, A. Estebana,b, J.A. Lorentea,b
a Hospital Universitario de Getafe, Madrid, Spain
b CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
c Centro Nacional de Biotecnología, CSIC, Madrid, Spain
d Sanatorio Casmu, Montevideo, Uruguay
e Instituto Nacional de Tórax, Santiago de Chile, Chile
f Hospital Regional de Salto, Salto, Uruguay
g Sanatorio GREMEDA, Artigas, Uruguay
h Hospital Juan A. Fernández, Buenos Aires, Argentina
This item has received
Article information
Abstract
Objective
Keywords:
H1N1
ARDS
Lung pathology
Mechanical ventilation
Full Text
Referencias no citadas
References
[1]
R. Perez-Padilla, D. de la Rosa-Zamboni, S. Ponce de Leon, M. Hernandez, F. Qui¿nones-Falconi, E. Bautista, et al.
Pneumo-nia and respiratory failure from swine-origin influenza A (H1N1) in Mexico.
N Engl J Med., 361 (2009), pp. 680-689
[2]
A.E. González-Vélez, C. Díaz-Agero-Pérez, A. Robustillo-Rodela, A.M. Cornejo-Gutiérrez, M.J. Pita-López.
Med Intensiva 2011 Apr;30.
Oliva-I¿niguez L, et al. Factors associated to admission to intensive care in patients hospitalized due to pandemic Influenza A/H1N1, (2009),
[3]
J. Rello, A. Rodríguez, P. Iba¿nez, L. Socias, J. Cebrian, A. Marques, et al.
H1N1 SEMICYUC Working G**roup Intensive care adult patients with severe respiratory failure caused by influenza A (H1N1) in Spain.
Crit Care., 13 (2009), pp. R148
[4]
A. Rodríguez, I. Martin-Loeches, J. Bonastre, P. Olaechea, F. Alvarez-Lerma, R. Zaragoza, et al.
SEMICYUC-CIBERES-REIPI working gro**up.
First influenza season after the 2009 pandemic influenza: report of the first 300 ICU admissions in Spain. Med Intensiva., 35 (2011), pp. 208-216
[5]
A. Rodríguez, L. Socías, J.E. Guerrero, J.C. Figueira, N. González, E. Maraví-Poma, et al.
Pandemic influenza A in the ICU: expe-rience in Spain and Latin America GETGAG/SEMICYUC/(Spanish Work G**roup on Severe Pandemic Influenza A/SEMICYUC).
Med Intensiva., 34 (2010), pp. 87-94
[6]
G. Domínguez-Cherit, S.E. Lapinsky, A.E. Macias.
Critically ill patients with 2009 influenza A. (H1N1) in Mexico J.A.M.A., 302 (2009), pp. E1-E8
[7]
T. Mauad, L.A. Hajjar, G.D. Callegari, L.F. da Silva, D. Schout, F.R. Galas, et al.
Lung pathology in fatal novel human influenza A (H1N1) infection.
Am J Respir Crit Care Med., 181 (2010), pp. 72-79
[8]
S. Mukhopadhyay, A.T. Philip, R. Stoppacher.
Pathologic findings in novel influenza A (H1N1) virus (“swine flu”) infection: con-trasting clinical manifestations and lung pathology in two fatal cases.
Am J Clin Pathol., 133 (2010), pp. 380-387
[9]
M.V. Soto-Abraham, J. Soriano-Rosas, A. Díaz-Qui¿nónez, J. Silva-Pereyra, P. Vazquez-Hernandez, O. Torres-López, et al.
Pathological changes associated with the 2009 H1N1 virus.
N Engl J Med., 361 (2009), pp. 2001-2003
[10]
J.K. Taubenberger, D.M. Morens.
The pathology of influenza virus infections.
Annu Rev Pathol., 3 (2008), pp. 499-522
[11]
J.R. Gill, Z.M. Sheng, S.F. Ely, D.G. Guinee, M.B. Beasley, J. Suh, et al.
Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections.
Arch Pathol Lab Med., 134 (2010), pp. 235-243
[12]
M.D. Gole, J.M. Souza, I. Choi, C. Hertkorn, S. Malcolm, R.F. Foust.
3rd, et al.
Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol., 278 (2000), pp. 961-967
[13]
N.J. Lamb, J.M. Gutteridge, C. Baker, T.W. Evans, G.J. Quinlan.
Oxida-tive damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration, and chlorination.
Crit Care Med., 27 (1999), pp. 1738-1744
[14]
L. Martínez-Caro, J.A. Lorente, J. Marín-Corral, C. Sánchez- Rodríguez, A. Sánchez-Ferrer, N. Nin, et al.
Role of free radicals in vascular dysfunction induced by high tidal volume ventilation.
Intensive Care Med., 35 (2009), pp. 1110-1119
[15]
C. Peiró, N. Lafuente, N. Matesanz, E. Cercas, J.L. Llergo, S. Vallejo, et al.
High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen perox-ide.
Br J Pharmacol., (2001), pp. 74
[16]
C. Peiro, N. Matesanz, J. Nevado, N. Lafuente, E. Cercas, V. Azcutia, et al.
Glycosylated human oxyhaemoglobin activates nuclear factor-kappaB and activator protein-1 in cultured human aortic smooth muscle.
Br J Pharmacol., (2003), pp. 90
[17]
M. Nakajima, O. Kawanami, E.J. Jin, M. Ghazizadeh, M. Honda, G. Asano, et al.
Immunohistochemical and ultrastructural stud-ies of basal cells.
Clara cells and bronchiolar cuboidal cells in normal human airways. Pathol Int., 48 (1998), pp. 944-953
[18]
T.A. Hall, BioEdit:.
a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.
Nucleic Acids Symp Ser., 41 (1999), pp. 95-98
[19]
N. Jorba, S. Juarez, E. Torreira, P. Gastaminza, N. Zamarre¿no, J.P. Albar, et al.
Analysis of the interaction of influenza virus polymerase complex with human cell factors.
Proteomics., 8 (2008), pp. 2077-2088
[20]
G.R. Bernard, A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, et al.
The American-European Consensus Conference on ARDS.
Definitions, mechanisms, relevant outcomes, and clin-ical trial coordination. Am J Respir Crit Care Med., 149 (1994), pp. 818-824
[21]
A.L. Katzenstein, J.L. Myers.
Nonspecific interstitial pneumonia and the other idiopathic interstitial pneumonias: classification and diagnostic criteria.
Am J Surg Pathol., 24 (2000), pp. 1-3
[22]
D. Bruder, A. Srikiatkhachorn, R.L. Enelow.
Cellular immunity and lung injury in respiratory virus infection.
Viral Immunol., 19 (2006), pp. 147-155
[23]
J.P. Wong, M.E. Christopher, S. Viswanathan, N. Karpoff, X. Dai, D. Das, et al.
Activation of toll like receptor signaling path-way for protection against influenza virus infection.
Vaccine., 27 (2009), pp. 3481-3483
Copyright © 2011. Elsevier España, S.L. and SEMICYUC